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Enforcing safety while preventing overly conservative be-
haviors is essential for autonomous vehicles (AVs) to achieve
high task performance [1]. To achieve this goal, AVs must
generate safe, feasible, and comfortable trajectories during
real-time replanning iterations [2], [3]. Despite significant
advancements, addressing potential safety hazards remains
a critical challenge under uncertainties (e.g., varying terrain
and sensor occlusions), particularly for safety-critical high-
speed autonomous driving [4], [5]. Additionally, these un-
certainties may lead to abrupt maneuvers (e.g., sudden lane
changes or decelerations) to address unforeseen contingen-
cies, thus disrupting driving consistency and compromising
task efficiency [6], [7]. Moreover, real-time replanning in
such environments involves addressing intricate constraints
and objectives simultaneously for multi-objective optimiza-
tion tradeoffs [8]. These challenges are further exacerbated
in dense and interaction-heavy traffic environments, making
real-time optimization computationally intensive [9], [10].
In light of those real-world problems, my research vision
is to answer: How to safely deploy AVs that avoid over-
conservative behaviors and maintain driving consistency in
real time under uncertainties?

One key underlying factor to the safety concern stems
from uncertainties in both internal system models (e.g.,
unknown parameters) and external environments (e.g., un-
known intentions of dynamic obstacles) [11], [12]. These
uncertainties become critical in contingency scenarios, where
potential risks cannot be predicted with certainty [13], [14].
My past research addresses this problem from two perspec-
tives: 1) Developing consensus spatiotemporal safety barrier
within a scenario tree structure to address potential contin-
gencies when historical obstacle data is unavailable (e.g.,
occluded phantom vehicles). 2) Anticipating the influence
of uncertainties on the system state through fast online
Bayesian learning, and leveraging control theory to design
asymptotically stable safety barrier certificates. Furthermore,
my work enables fast optimization while balancing multiple
constraints, such as safety and driving stability, in high-
dimensional, nonlinear planning and control problems under
dense obstacle environments. To achieve this goal, we ex-
plore constraint transcription and decompose the nonlinear
optimization problem using parallel optimization methods,
including multithreading techniques, multiple shooting [15],
[16], and the alternating direction method of multipliers
(ADMM) [17]. These approaches streamline the optimization

process while ensuring compliance with safety constraints,
as validated through both theoretical analysis and real-world
experiments.

A. Safety under Uncertainties

Ensuring safety in AVs requires confining the state of the
system to a provably safe subset of the state space. Tradi-
tional methods enforce safety via explicit constraints [12],
[18], [19], [20]. However, they typically neglect unmod-
eled epistemic uncertainty (e.g., sensor occlusion) and un-
compensated aleatory uncertainty (e.g., terrain deformation)
in contingency scenarios [11]. My past work addresses
these limitations through two aspects: 1) Consensus safety:
Tackling potential risks arising from epistemic uncertainty
(e.g., sensor occlusion, unanticipated dynamic obstacles).
2) Safety recovery: Enabling AVs to recover from unsafe
states (excluding collisions) to a safe state under aleatory
uncertainty (e.g., stochastic terrain parameter variation). For
instance, the ego vehicle (EV) can asymptotically restore a
safe following distance after a sudden cut-in by surrounding
vehicles (SVs).

To anticipate the evolving states of the EV and SVs,
we develop a bi-convex spatiotemporal safety barrier [9].
This module employs an adaptive barrier coefficient strategy
across the optimization horizon to account for the prediction
inaccuracy of the future trajectories of SVs. By progressively
enlarging the solution space in later planning phases, the
strategy reduces conservatism while facilitating stable ad-
justments, thus balancing safety and task performance. To
further tackle the environment perception uncertainties, such
as sensor occlusion, we introduce a consensus spatiotemporal
safety barrier within a scenario-tree structure [21], [22]. The
reachability analysis is employed to dynamically assess po-
tential risk configurations for local trajectories during safety
barrier design. This strategy ensures that all generated tra-
jectories share a common consensus segment, guaranteeing
persistent safety within the trajectory space despite percep-
tion uncertainties. Moreover, the biconvex structure of spa-
tiotemporal safety barrier constraint enables decomposition
into low-dimensional convex formulations, facilitating fast
optimization while rigorously preserving safety guarantees.

For unexpected safety violations, my previous research
proposes a stochastic stabilizing control barrier frame-
work [23]. By integrating incremental Bayesian learning, we
efficiently update the kernel matrix and its inverse in the



Gaussian processes (GPs) using Woodbury matrix identity
optimizations. Consequently, the learning complexity of GPs
is reduced from O(n3) to O(n2) [23], [24]. This method
embeds the learned uncertainty bounds into control barrier
constraints, ensuring that the EV can safely converge to a
safe state in the presence of varying model uncertainties. For
instance, the EV can recover a safe following distance after
abrupt disturbances, acting as a real-time safety recovery
filter under model uncertainties.

B. Safe and Consensus Parallel Optimization

Safe and efficient trajectory optimization is critical for AVs
to safely execute tasks while incorporating real-time sensor
feedback in dynamic environments. A critical challenge
stems from the non-holonomic kinematic constraints inherent
to AVs, which, when coupled with safety-critical boundary
conditions, result in nonlinear and non-convex optimization
problems [3]. In obstacle-dense environments, these issues
become more pronounced, as conventional sequential solvers
struggle to achieve real-time performance. Furthermore,
achieving Pareto-optimality in balancing multiple objectives,
such as safety and comfort, poses a significant challenge due
to the inherent tradeoffs between these criteria [8].

Our prior work addresses these issues through a spa-
tiotemporal receding horizon control (ST-RHC) framework,
which integrates planning and control through a multiple
shooting formulation [25]. To mitigate local optimal issues
in dense traffic scenarios, we extend the ST-RHC framework
into a real-time parallel trajectory optimization strategy [26].
This strategy employs multithreading and multiple shooting
techniques to blend discrete maneuver decisions into contin-
uous parallel trajectory optimization, achieving replanning
frequencies that exceed 50Hz in dense traffic flow.

To further address Pareto-optimality, we introduce
a barrier-enhanced homotopic optimization (BPHTO)
method [9]. The proposed BPHTO exploits the bi-convexity
of the kinematics of the EV and the spatiotemporal
control barrier to formulate a bi-convex optimization
problem, striking a balance between safety and task
performance. Using reachability analysis, we devise a warm
initialization goal sample strategy to determine discrete
maneuver homotopy for BPHTO in a receding horizon
planning manner. This allows the EV to respond adeptly
to SVs with enhanced driving consistency. Additionally,
we decompose the BPHTO into several low-dimensional
Quadratic Programming (QP) subproblems via over-relaxed
ADMM iterations [27], ensuring real-time feasibility.

Considering motion consistency under perception uncer-
tainties, we propose a risk-aware consensus parallel op-
timization strategy [22] and a contingency planner [21].
These methods enable each trajectory to share a common
consensus segment while addressing various risk scenarios,
ensuring both safety and motion consistency in dense traffic.
By utilizing discrete-time barrier function theory, we ensure
trajectory safety through forward invariance within a con-
sensus safe set. We further exploit the biconvex properties
of the constraints and decompose them into a series of low-

dimensional QP subproblems via consensus ADMM. This
strategy ensures each generated feasible trajectory adheres to
the same consensus segment while enabling large-scale opti-
mization in real time. Extensive validation using real-world
traffic datasets and hardware experiments demonstrate robust
safety and motion consistency in occluded scenarios, with
stable maximum computation times (< 100ms) for problems
involving up to 5175 variables and 7860 constraints.

For unstructured navigation tasks under epistemic un-
certainty (e.g., sensor occlusion), we tailor the consensus
ADMM approach into a branch model predictive control
framework for safe robot navigation in occluded, obstacle-
dense environments [28]. This method accelerates constraint
evaluations via parallelized Jacobian computations and coor-
dinates trajectory hypotheses. Real-world experiments on an
Ackermann-steering robot validate its efficacy in obstacle-
dense environments with occluded dynamic obstacles.

C. Future Research

Interaction-aware Safety Filter: Current safety filters
typically neglect the bidirectional influence inherent in
human-robot systems, where the action of ego agent in-
fluences human behavior [12], [29]. To address this gap,
we propose to develop a real-time interaction-aware safety
filter for AVs in crowded, partially observable environments
(e.g., urban intersections). This initiative addresses three
scientific challenges: (1) modeling reciprocal collision re-
sponsibility between ego agents and dynamic participants,
(2) overcoming reactive behavior of existing safety filters
(e.g., CBF-based strategies) with formal safety guarantees,
and (3) achieving fast optimization in cluttered multi-agent
scenarios (e.g., exceeding 100Hz).

Learning Implicit Safety Constraints: A promising ap-
proach to capture latent safety rules in human-robot systems
involves learning safety constraints from human demonstra-
tions via model-based diffusion techniques [30]. We aim
to train context-dependent safety preferences (e.g., yield-
ing thresholds at unmarked crosswalks) while quantifying
predictive uncertainty using probabilistic tubes. These tubes
encode confidence bounds for learned behaviors, which are
incorporated into a gradient-based safety filter via event-
triggered thresholds. When learned policies approach these
bounds, the safety filter intervenes to enforce worst-case
safety guarantees by overriding data-driven policies.

Scalability in High-Dimensional Autonomous Systems:
High-dimensional autonomous systems, such as humanoid
robots, face challenges in balancing real-time safety and
stability due to complex internal dynamics (e.g., upper-lower
body coordination) [31]. To address this issue, we plan to use
the data-driven Koopman operator [32] to embed nonlinear
dynamics into a latent linear space for efficient optimization.
Building on my prior consensus optimization work [22], [21],
[28], we will extend these methods to coordinate subsystem
interactions (e.g., arm-leg coordination in humanoids) us-
ing GPU-accelerated consensus ADMM iterations. This ap-
proach aims to handle mutual influences between subsystems
while maintaining real-time performance.
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