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Abstract— To ensure long-term safety and reliability, autonomous
agents sharing the same environment must be able to infer each
other’s constraints. However, existing methods cannot recover
constraints that depend upon the states of multiple interacting
agents, such as collision avoidance. To address this gap, we use
dynamic game theory and inverse optimal control (IOC) to learn
parametric constraints from a given dataset of local Nash interactions
between multiple agents. Specifically, we introduce mixed-integer
linear programs (MILP) encoding the Karush-Kuhn-Tucker (KKT)
conditions of each interacting agent, which recover constraints that
are consistent with the Nash stationarity of the interaction demonstra-
tions. We also demonstrate that the interaction constraints recovered
by our method can be used to design motion plans which robustly
satisfy the underlying constraints. Finally, we illustrate via numerical
simulation that our method can successfully recover constraints from
interaction demonstrations of multiple agents with spherical and
polytope-shaped collision-avoidance constraints, and can additionally
design robust, interactive motion plans for the aforementioned agents.

I. INTRODUCTION

Learning from demonstrations (LfD) is a powerful paradigm for
enabling robots to learn constraints in their workspace [1-5]. In par-
ticular, [1-3] recast constraint inference as the problem of solving
for the constraint parameters that best explains a set of approxi-
mately optimal demonstration trajectories. However, existing con-
straint inference methods are typically designed for robots operat-
ing in isolation, and do not account for interactions between robots
and surrounding strategic agents. These methods thus cannot infer
coupled constraints that simultaneously depend on the states or
control inputs of multiple agents, such as collision avoidance.

To address this key limitation, we use tools from dynamic
game theory and inverse optimal control (IOC) to learn constraints
from the demonstrations of inferactions between multiple strategic
agents. Concretely, we recover unknown constraint parameters by
posing an inverse optimization problem that uses Nash equilibrium
constraints to encode steady-state agent interactions. We also show
that the inferred multi-agent constraints can be used for robust mo-
tion planning. Although IOC and dynamic games have been previ-
ously applied to enable cost inference in multi-agent settings [6-9],
to the best of our knowledge, our work is the first to formulate a
game-theoretic algorithm for multi-agent constraint inference.

Specifically, our main contributions are threefold:

1) We formulate a feasibility problem for learning parameterized
constraints from demonstrations of multi-agent interactions.
Our method generalizes the inverse optimal control-based
constraint learning method in [1] to the multi-agent setting.

2) We use our multi-agent constraint learning framework to
design robust motion plans through implicit constraint ver-
ification via Model Predictive Path Integral (MPPI) control.

3) We evaluate our method in settings where multiple agents
interact while adhering to inter-agent distance or polyhedral
collision avoidance constraints. Our numerical results con-
firm that our inverse learning and MPPI-based planning algo-
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rithms can successfully recover a priori unknown constraint
parameters and generate robust motion plans, respectively’.

II. RELATED WORK
A. Constraint Learning via Inverse Optimal Control (I0C)

LfD via IOC has been applied to empower robots to learn new
tasks [10, 11], deduce the intent of other strategic agents [6—§],
and infer static constraints in their environment [1-3]. In particular,
[11] proposes an IOC-based method to infer convex constraints
from a finite set of possible costs and constraints, Meanwhile,
[12-14] use a single demonstration to infer local constraints on the
trajectory level. Our method is most closely aligned with the work
of Chou et al. [1], which recovers unknown constraint parameters
by enforcing the KKT conditions of a given set of locally optimal
demonstrations. However, the methods mentioned above focus
only on single-agent scenarios with decoupled objectives and
feasible sets. In contrast, we leverage demonstrations of the
strategic interactions of multiple agents to infer constraints that
are coupled across agent states and controls.

B. Dynamic Games for Motion Planning and Cost Inference

Motion planning and intent inference in multi-agent scenarios
are naturally posed as dynamic games [15], which provide a
powerful theoretical framework for reasoning about strategic
multi-agent robotic interactions. In particular, [8, 16—19]present
computationally tractable algorithms for approximating solving
general-sum forward dynamic games, thus enabling efficient
motion planning for interactive multi-agent scenarios. Meanwhile,
[6-9, 20] developed inverse dynamic game algorithms to effi-
ciently infer the unknown costs of strategic agents operating in a
shared environment, by leveraging the KKT conditions that encode
the Nash stationarity of a given set of interaction demonstrations.
However, to our knowledge, existing inverse game-theoretic
methods are focused on identifying the unknown costs of strategic
agents, and are not directly applicable to constraint inference tasks.

III. FORWARD DYNAMIC GAME FORMULATION

We introduce forward dynamic games, which model the steady-
state motion plans of N strategic agents interacting in a shared
environment. Then, in Section IV we present an inverse dynamic
game framework for inferring the constraints of strategic agents
based on a demonstration dataset of their observed interactions.

Consider an N-agent, T-stage discrete-time forward dynamic
game G, in which 2 € R™ represents the state vector of each agent
i€[N]:={1,~-,N}ateachtime t € [T]:={1,--,T}. We denote by
xy = (z},,2]N) ER™ the system state at each time ¢ € [T, where
n:= Zie[ N7 Similarly, we concatenate the agent controls to
form the overall control vector at each time ¢ € [T'], denoted u; :=
(uf,,upY) € R™, where m := 3, ;. Finally, we define
€= (z,u) eRT™T 10 be the state-control system trajectory.

!Our poster contains some experiment results not included in this manuscript.



Each agent i € [IV] aims to minimize its cost J*(£), whose value
depends on the system trajectory £. Moreover, each agent i € [N]
is associated with a finite set of equality constraints C®¢ :=
{ni(€) = 0: j € [N*3"]} and inequality constraints ™" :=
{g5(£)<0:j € [N™47]}2, The constraints h’(-) and g (-) for each
agent 7 € [N] can encode the system dynamlcs z = fi(@uy)
obeyed by the states and controls of each agent, as well as obstacle

avoidance and inter-agent collision avoidance constraints.

The objective of the forward dynamic game is to compute the
steady-state system trajectory by solving the following coupled
optimization problems for each player ¢ € [N]:

n}lr} J' ©) (1a)
st hi(€)=0,Vje [N, (1b)
g5(§) <0,V je [N, (10)

We call u* a Nash equilibrium solution to (1) with trajectory =*
if £ := (a*,u*) satisfies (1). We call u* a local Nash equilibrium
solution to (1) with corresponding trajectory x™* if the state-control
trajectory £* := (z*,u*) satisfies the following condition: There
exists a neighborhood N (£*) of £* such that for any agent i € [V]
and any feasible trajectory {(:Et,ut) t € [T} of agent i, we have
JHER) = Ty up) < JHxy uy 2l ul). Here, the notation
—i refers to all agent indices in [N] apart from .

IV. MULTI-AGENT
CONSTRAINT INFERENCE AND MOTION PLANNING

A. Inverse Games for Multi-Agent Constraint Inference

In contrast to the forward dynamic game described above, the
multi-agent constraint inference problem concerns the deduction
of unknown agent constraints from a given dataset of observed
agent interactions. Spe01ﬁca11y, suppose the inequality constraint
set O'"*4% for each agent i € [N] is partitioned into a set of
known inequality constraints C;"*%" ={g} ,(§)=0:5 €[N, NP}

and unknown, parameterized inequality constraints C’meqZ =

{gj)_‘k(g’e) 0: ] c [Nmeq 7,]} where Nmeq, +Nl|‘;:‘b Nmeq,i’
and 6 denotes an unknown parameter 3. We aim to infer the
unknown parameter 6 from a given demonstration set of D local
Nash equilibrium trajectories D := {€!% : d € [ D]} satisfying the
KKT conditions corresponding to the forward dynamic game
(1)*. In other words, for each demonstration trajectory §J° in
D and each agent i € [N], there exist Lagrange ‘multipliers
A= O € NP = (35 € V), and
={vy e [Ne4-7]} satisfying:

h;(€8°) =0,V j€[N“] (2a)
gi k(€5 <0,V 5[N] (2b)
giw(€8°.0) <0,V je [N, 20)
AL >0,V 5 €[N, (2d)
)\’ilk>0 v je [Nhe), (2e)
AL O (E8) =0 j €[N, 2f)
/\;,CﬂleQjﬂk(fd 0)=0Y j €[N, (29

2Qur methods readily extend to the case where each agent’s constraint set is
the union of intersections of equality and inequality constraints. For simplicity,
our formulation here considers only intersections.

3We assume without loss of generality that all unknown constraints are
inequality constraints, since each equality constraint h;. (€) =0 can be expressed
using two inequality constraints: h;. (¢)<0and fh; ©)<o

4Our method can be refined to learn constraints from approximate Nash
equilibrium demonstrations; see (4) and the accompanying discussion.
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where © denotes elementwise multiplication. Above, (2a)-(2c)
encode primal feasibility, (2d)-(2e) encode the non-negativity of
the Lagrange multipliers corresponding to inequality constraints,
(2)-(2g) encode complementary slackness, while (2h) encodes
first-order stationarity. We collectively denote (2) by KKT! ({1‘”)
Thus, given the set D of locally optimal demonstrations, there

must exist Lagrange multiplier values )\Zd, AL ,f ,v>4 such that

the unknown constraint parameter 6, together with X% X5 pid,

solves the following feasibility problem:

1€[N],de[D] (3a)
i€[N],d€[D]. (3b)

find A4 NG00,
st KKT'(£5),

In the event that the demonstration data is not perfectly optimal,
we can relax (3) by replacing the stationarity constraints (2h)
with a cost term given by the norm squared of the stationarity
terms {stat’ () :d € [D],i € [N}, given by the left-hand side of
(2h). Then, to recover the unknown constraint parameter 6 from
approximately locally-optimal interaction demonstrations, we
solve the following optimization program:

. loc
R > Z\Istat ] (4a)
Nk Mk de[Dlie[N

s.t. (2.5\)—(2g)7 i€[N],de[D]. (4b)

As shown in [3], Sec. 4, when the constraints h;(), g;-,k(-),
and g;'-’j «(+) encode spherical or polytopic constraint sets, (4a)
can be written as a mixed-integer linear program (MILP) or
mixed-integer bilinear program (MIBLP), respectively, and solved
via off-the-shelf solvers like Gurobi [21].

B. Robust Motion Planning via Implicit Constraint Checking

Since multiple candidate values of the constraint parameter 6
may in general be consistent with the demonstration dataset D, the
KKT conditions (2) only pose necessary, but not sufficient criteria
that the true value of 6 must satisfy. To design robust motion
plans despite this uncertainty over 6, we perform robust constraint
checking to ensure that each designed, candidate trajectory is
marked safe by a 6 value consistent with (2). To this end, we
present an implicit approach for constraint checking via Model
Predictive Path Integral (MPPI) control [22, 23].

Specifically, given a nominal state-control trajectory

nom = (Znom, Unom), We enforce constraint satisfaction by
iteratively applying Algorithm 1 to update the trajectory &,om until
convergence. In each iterate of Algorithm 1, we first draw M
sample controls {u(*) : s € [M]} i.i.d. from a Gaussian distribution
centered on Upey, Which we then unroll using the dynamics f
to generate the sample state-control trajectories {£(*) : s € [M]}.
Next, for each & () we wish to determine whether there exists
a feasible constraint parameter value § which is consistent with
the demonstrated interactions D, but not with £ ($), In other words,
we wish to solve the feasibility problem (3), augmented with the
stipulation that the sample trajectory £(%) violates the unknown
primal inequality constraints /\1 EINjElNT] {95 % (€ 9)<0}:
find O NG L0

jk’

1€[N],de€[D] (5a)



st.  KKT'(¢5), i€[N],de[D],

Vo g€ 0)>0].

i€[N],JE[NTY]

(5b)
(o)

If (5) returns feasible, there exists some constraint parameter value
6(%) consistent with the demonstrations D such that § () violates
the inequality constraints /\M { g;j k (g(s) ,0())<0}. In this case,
we compute the total constraint violation for each agent 4, denoted
ct, below, as follows:

(€D 09):= > max{gl,(£.0¢)0}. (6

JEINT]

Otherwise, if (5) is infeasible, we set ci, (£(*)):=0 for each i € [N].
We then update the nominal control trajectory for each agent 7 €
[N] by taking a weighted combination of the sample control trajec-
tories {u(s) 18€ [M ];, with weights depending on the correspond-
ing cost value .J*(¢(%)) and degree of constraint violation ¢, (£(*)):

o S eepn@ D= (€X)) =y (€),09)))u*)

T Y e @D (=T () — e (§9,00))

Finally, we unroll the updated nominal control trajectory {umm
i€ [N]} to generate the updated nominal state-control trajectory £°.

0

Algorithm 1: Inverse KKT-Guided MPPI control-based
Sample Trajectory Update (1 Iterate)

Data: Nominal state-control trajectory &nom, dynamics
model f, demonstrations D, number of samples M

1 {€9:se[M]}+
N sample state-control trajectories generated by perturbing
&nom via a Gaussian distribution, and enforcing the dynamics f.
2 for s€[M] do

3 Solve augmented inverse KKT problem (5)

4 if (5) is feasible then

5 ) + Feasible 6 value from solving (5)
6 & (€9,09)) = (6), Vie[N].

7 else

8 ‘ cﬁv(§<s) S ))<—0

9 {ilpom :1€ [N]} 4= (7), using c&, (£*),01)), J*(£0)), and u(®).
10 {Elom:ic [N1} <~ Unroll {@}yy i€ [N]} using dynamics f
11 return Updated nominal state-control trajectory 5,,,,,,,

V. EXPERIMENTS

To evaluate our constraint learning and robust motion planning
methods, we present a simulation study of collision avoidance
scenarios with interacting agents whose constraint sets are either
spherical (Section V-A) or polytope-shaped (Section V-B). All
experiments are implemented with YALMIP [24] and Gurobi [21].

A. Spherical Collision Avoidance Constraints

Consider the setting in which /N =3 agents navigate in a shared
2D environment over the time horizon 7'=10. The state of each
agent i € [N] is given by xi := (p, t7p; 1 UL 05 ) € RY for
each t € [T, and the system state is given by x; := (z},,z)
Each agent follows the double integrator dynamics discretized at
intervals of At=1s, and optimizes the following smoothness cost:

T-1

T =3 Ik =Pl B+ I e —pa 3] ®)
t=1

while ensuring that their trajectory satisfies the following spherical
collision avoidance constraints at each time ¢ € [T'], which are a
priori unknown to the constraint learner:

g (&0 =—|pL ,—pL I3+ <0. ©)

Above, ' denotes the radius of the spherical collision avoidance
set for each agent ¢ € [N]. Finally, the trajectory of each agent
1 € [N] is constrained by a prescribed set of origin and goal
positions, given by:

o= |10 | o,

B (10)

where p; := (pl, ,,p}, ;) for each i € [N] and t € [T}, while p, € R?
and P! € R? respectively denote the origin and destination
positions for agent ¢, and are fixed at the following values:

=(0,0), p2=(20,20), p3=(0,20),
Ppy=(2020), p3=(0,0), p3=(200).

a) Constraint Inference: We conduct two experiments
to validate our constraint learning method, with ground truth
constraint parameter values set to (6',6% 63) = (4,5,6) and
(61,62,6%) = (6,7,8), respectively. For each experiment, we gen-
erate an interaction demonstration & that activates the constraints
(9), by computing local Nash equilibrium solutions corresponding
to the coupled optimization problem (1). Specifically, we solve
the KKT conditions (2) using the costs and constraints given
by (8)-(11). In Fig. 1, we plot £ while emphasizing timesteps at
which the inequality constraints (9) were active.

By solving (4) using the demonstration &, we successfully infer
the correct values of 62 and 6 in each experiment. Our Gurobi
solver converged in 90 ms. Note that since Agent 1’s collision
avoidance constraint, as parameterized by #1, is the least restrictive
among the agents, it is not recoverable from the demonstration &.

b) MPPI-based Motion Planning: To evaluate our MPPI-
based motion planning approach (as detailed in Sec. IV-B), we first
generate a single demonstration trajectory using the costs and con-
straints given in (8)-(10), with origin and destination coordinates:

(11a)
(11b)

Po=(10,0), p3=(0,10), (12a)
pa=(0,10), p=(100). (12b)
and ground truth constraint parameters 6 = (1,6%) = (5,5).

To design robust trajectories, we run Algorithm 1 for 70
iterations using M = 16 samples, with time horizon T" = 20
and discretization time At=0.1s. As illustrated in Figure 2, our
method generates trajectories for each agent which satisfy the
spherical inter-agent collision avoidance constraints (9) with radii
9! =62 =5. Our Gurobi solve time was 293.36 s.

B. Polytope Collision Avoidance Constraints

We also numerically evaluate our constraint inference method
on the setting where the interacting agents have polytope-shaped,
rather than spherical, collision avoidance constraints. Concretely,
consider the interactions, over 7' = 20 time steps, of N = 2
agents with states, dynamics, costs (8), and origin and destination
constraints (11) as formulated in Section V-A. We define:

092545 —0.9671 10.0779
00487  —0.3162 9.4868
A=102160 09762 | "= 116058 1
—0.9285  0.3714 9.4705
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Fig. 1: Demonstrations (3 agents) for Sec. V-A. We indicate
timesteps when the inter-agent collision constraints are active
(resp., inactive) with filled rectangular (resp., unfilled circular)
nodes. Dashed black lines connect pairs of agent states at which
the constraints are active.

and constrain each agent’s trajectory lies within the following
constraint set, which is a priori unknown to the constraint learner:

T 4
™ = A\ {An =i )+ Ava(py—py ") <b}, (14
t=1r=1
To validate our constraint learning method, we generate two
local Nash equilibrium trajectories £, £(2), which we then use
to solve solve (4). As shown in Fig. 3, our method successfully
recovers the exact inter-agent polytope constraint (14). Our
Gurobi solve time was 55.93 s.

VI. CONCLUSION AND FUTURE WORK

Using tools from inverse optimal control and dynamic game
theory, we formulated a constraint learning framework that can
infer the coupled constraints of a set of strategic agents from
demonstrations of their equilibrium interactions. Moreover, we
show the applicability of our constraint learning method for robust
motion planning. Across numerical studies of multiple interacting
agents with spherical or polytope-shaped collision avoidance
constraints, we show that our method can accurately infer agent
constraints and generate robust motion plans. Future work
includes generalizing our approach to infer temporally-extended
constraints [25] and constraints with unknown parameterization
via a Gaussian process-based modeling approach [26].
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Fig. 2: (a) The multi-agent trajectories & (b) inter-agent distance
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Fig. 3: Results of Sec. V-B. We plot the relative distances between
agents from the demonstrations in gray. We plot the learned region
(blue), which coincides with the true constraint (red). Dashed
black lines mark the trajectories of Agent 1 (circle) and Agent
2 (triangle) from the two demonstrations, &) and £,
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