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Abstract— Robot learning has produced remarkably effective
“black-box” controllers for complex tasks such as dynamic
locomotion on humanoids. Yet ensuring dynamic safety, i.e.,
constraint satisfaction, remains challenging for such policies.
Reinforcement learning (RL) embeds constraints heuristically
through reward engineering, and adding or modifying con-
straints requires retraining. Model-based approaches, like con-
trol barrier functions (CBFs), enable runtime constraint spec-
ification with formal guarantees but require accurate dynam-
ics models. This paper presents SHIELD, a layered safety
framework that bridges this gap by: (1) training a generative,
stochastic dynamics residual model using real-world data from
hardware rollouts of the nominal controller, capturing system
behavior and uncertainties; and (2) adding a safety layer on
top of the nominal (learned locomotion) controller that lever-
ages this learned residual model via a stochastic discrete-time
CBF formulation enforcing trajectory-long safety constraints in
probability. The result is a minimally-invasive safety layer that
can be added to the existing autonomy stack to improve user
command tracking and provide probabilistic safety guarantees.
In hardware experiments on a Unitree G1 humanoid, SHIELD
enables safe navigation (obstacle avoidance) through varied
indoor and outdoor environments using a nominal (unknown)
RL controller and onboard perception.

I. INTRODUCTION

As learning-based controllers achieve remarkable success
in complex robotic tasks such as legged locomotion [1]–[8],
they bring with them a fundamental tension: the black-box,
data-driven nature, which enables their robust performance,
simultaneously obscures their interpretability and our abil-
ity to provide formal safety guarantees without expensive
retraining.

Several methods have emerged in recent years to enable
the safe deployment of learning-based controllers. For ex-
ample, conformal prediction [9], [10], “backup”-style ap-
proaches [11], and backward reachability via the Hamilton-
Jacobi-Bellman (HJB) equations [12]. However, these ap-
proaches either do not resolve the inherent unpredictability
of the controller or become computationally intractable.

To address these issues, we introduce the use of safety
filters in the form of control barrier functions (CBFs) [13],
[14] for these complicated systems. This method takes a
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Fig. 1. A humanoid robot implementing the SHIELD architecture au-
tonomously avoids collision with a human using onboard sensing. SHIELD
combines a performant underlying controller (e.g., an RL-trained locomotion
policy) with a safety layer, which modulates high-level reference signals
through a generative model of tracking error trained using real-world
trajectory data. This architecture allows safety constraints (like collision
avoidance) to be specified and enforced at runtime, with rigorous proba-
bilistic guarantees, even on high-dimensional systems like humanoid robots
with complex or “black-box” control policies.

nominal controller (potentially learning-based) and filters it
via the CBF condition to ensure safety framed as forward set
invariance, and has been proven effective on a wide range
of robotic systems, including quadrupedal and bipedal robots
[15], [16]. As the conventional formulation of CBFs assumes
an accurate model of the dynamics and environment of the
system, recent work has taken advantage of reduced-order
models in the synthesis of CBF-based safety filters [17],
[18], but this requires the underlying assumption of accurate
tracking of reference signals. In this work we remove this
assumption by capturing this error using a generative model
and accounting for it through a stochastic safety constraint
with trajectory-long guarantees.

Contributions. This paper introduces SHIELD, a novel
paradigm to guarantee safety in robotic systems that bridges
the gap between data-driven and model-based safety meth-
ods. SHIELD is specifically designed for systems with com-
plex, robust, but ultimately stochastic low-level controllers,



Fig. 2. SHIELD enables real-world pedestrian avoidance with a humanoid robot, using a “general-purpose” RL policy. Top: Our robot safely walks among
pedestrians using SHIELD’s stochastic safety framework. Bottom: The robot relies solely on onboard perception to detect and avoid obstacles. Experimental
video of this experiment can be found at: https://vimeo.com/1061676063.

such as RL policies used by humanoid robots for locomotion.
Unlike traditional safety filters, SHIELD functions as a safety
layer that sits “above” / “before” the nominal learning-based
controller in the autonomy stack (cf. Fig. 1), modulating
the commanded reference signal rather than directly filtering
control outputs. SHIELD is constructed over three steps:
Step 1: Constraint specification. The user specifies a safety

constraint on a subset of the robot states (e.g. the
pose of the robot torso) mathematically, with positive
values corresponding to constraint satisfaction. The low-
level policy does not need to be trained to satisfy
this constraint but can instead be designed to track
general reference commands provided to the reduced-
order model (as is typical for RL [2], [5]).

Step 2: Dynamics residual learning. The user collects real-
world data of the low-level policy being excuted and
trains a conditional variational autoencoder (CVAE) to
model the difference between the desired motion of
the reduced-order model, and closed-loop system’s real-
world tracking of these commands.

Step 3: Safety-aware reference generation. The learned
residual distribution is then used to compute
modifications to the reference command that improve
the tracking of the desired motion of the reduced-order
model while satisfying a stochastic discrete-time
control barrier function (S-DTCBF) [19] constraint.The
result is a formal, trajectory-long guarantee of safety
in probability.

Crucially, in contrast to previous work [20], SHIELD uses
the learned residual to improve tracking performance in
addition to providing probabilistic safety guarantees.

II. PROBLEM STATEMENT

Consider robots (e.g., humanoids) that can be modeled as
discrete time dynamical systems of the form:

sk+1 = Φ(sk,ak). (1)

where s ∈ Rns is the state of the system and a ∈ Rna is
the input of the system. This may be the high-dimensional
representation of the system where s includes global pose,
joint angles, joint angular velocities, etc. and a may be joint
torques, voltages, etc. For this complex system, we assume

that we have some controller π : Rns × Rnu → Rna that
takes the current state of the system s and user commands u
to produce full-order system inputs a. Using this controller
yields the closed-loop system:

sk+1 = Φ(sk,π(sk,uk)). (2)

Due to the complexity of this system, it may be difficult
to design safety specifications and an actionable control
formulation. To mitigate this, we consider a reduced-order
representation of the system x ∈ Rnx where nx < ns and
x = p(s) for some projection p : Rns → Rnx that projects
the full-order state s onto the reduced-order state x. Here x
may be the outputs of the system that are considered in the
safety specification. Thus, we can represent the discrete-time
dynamics of this reduced-order model of the system as:

xk+1 = p(Φ(sk,π(sk,uk))) (3)
≈ F(xk) +G(xk)uk + dk (4)

where F(xk)+G(xk)uk represents a simplified model of the
system and d is the difference between the full-order model
and this reduced order model, also called the dynamics resid-
ual. To capture the complexities of the full-order dynamics
Φ and the controller π, we consider dk to be a random
disturbance sampled from a distribution D(sk:0,ak:0) that
is dependent on the history of full states and from time
0 through k, denoted as sk:0 and ak:0 respectively. Thus,
our tasks are to characterize D, use that characterization to
construct a safety specification using stochastic discrete-time
CBFs as in [19], [21], [22], and deploy that constraint to
make safety guarantees for the robotic system.

III. SHIELD FRAMEWORK

To address the tasks above, we construct the SHIELD
framework in Fig. 1 that learns the disturbance, corrects the
tracking and enforces discrete-time stochastic safety.

A. Disturbance learning and tracking correction

While theoretical frameworks for probabilistic safety (e.g.,
[23, Thm. 3]) provide powerful methods for analyzing and
synthesizing risk-aware controllers, their guarantees depend
on accurate characterization of the disturbance distribution
D. We propose a data-driven approach, based on [20], that
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Fig. 3. Higher α values correspond to more conservative behavior, this
increased conservatism a consequence of a lower K-step exit probability or
a higher variance.

leverages generative modeling to learn these distributions
directly from empirical trajectories of the system.
Conditional Variational Inference. We collect a
dataset of state, command, and disturbance tuples D =
{(xi,ui,di)}Ni=1 and train a Conditional Variation Autoen-
coder (CVAE) [24] on this dataset, which yields a generative
disturbance model pθ(dk|xk:k−N ,uk:k−N ). We extend the
method presented in [20] by conditioning the model on a
context window of length N ∈ N to better capture temporal
effects such as higher state derivatives or time delays, which
greatly boosts modeling accuracy for a complex system like
a humanoid robot (Sec. IV). Note that the input ui here is
the unfiltered user command, meaning we do not need to
retrain the CVAE episodically.
Stochastic Tracking with Learned Disturbance. To im-
prove the tracking of the intended system behavior, we
define the following optimization problem that minimizes the
expected difference between the next state of the reduced-
order model under the desired command and the next state
of the actual system:

u∗
k = argminuk∈U E[||xk+1 − (F(xk) +G(xk)uk + dk)||2|xk:0,uk:0]

where xk+1 is the desired next position. Assuming pseudo-
invertibility of G(xk), the optimal uk is:

u∗
k = G†(xk)(−F(xk) + xk+1 − E[dk|xk:0,uk:0]). (5)

However, since we do not have access to the true expectation
E[dk|Fk], we approximate this with the learned expectation
computed from samples generated by the CVAE:

u∗
k = G†(xk)(−F(xk) + xk+1

− Epθ
[dk|xk:k−N ,uk:k−N ]).

This u∗
k uses the learned disturbance distribution to select

the command which reduces the mean squared error to the
desired next state xk.

B. Safety with Learned Disturbance

With the learned dynamics residual, we use it to improve
safety. To do this, we select a maximum allowable risk level
P ∈ (0, 1), and solve for the α that will result in the desired
risk level bound P [23, Thm. 3] as shown in Fig. 3 given
the horizon length K ∈ N, the initial safety value h(x0), the
step-wise bound δ, and the variance bound σ:

α = L(P,K, h(x0), δ, σ) (6)

Algorithm 1 SHIELD: Deployment Phase

1: Initialize k ← 0,x← x0

2: Initialize P, δ, α
3: while true do
4: obstacles← {ρ1, ...,ρM}
5: hk ← mini h̃(x,ρi), i

∗ ← argmini h̃(x,ρi)
6: if k modulo K = 0 then
7: Σ← covpθ

(d|xk:k−N ,uk:k−N )
8: α← L(K,hk, P, δ,Σ)
9: end if

10: Get ucmd as input
11: uadjusted ← ucmd − Epθ

[d|xk:k−3,uk:k−3]

12: e← pk−ρobs,i∗

||pk−ρobs,i∗ ||
, λ← λmax(ρ, e)

13: u∗
safe ← minu ∥u− uadjusted∥2

14: s.t. h̃(F(x) +G(x)u)− λ
2e

TΣe ≥ αhk

15: Apply command u∗
safe, xk ← xk+1, k ← k + 1

16: end while
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Fig. 4. SHIELD improves tracking performance by correcting learned
disturbances. After applying the SHIELD correction as shown by the blue
dashed lines, the robot’s tracking of the user’s intended velocities (shown
as a black dashed lines) improves.

Thus we enforce the S-DTCBF condition by incorporating
it as a constraint in a safety filter of the form:

u∗
safe = argmin

u∈U
∥u− u∗∥ (7)

s.t. E[h(F(xk) +G(xk)uk + dk)|xk:0,uk:0] ≥ αh(xk)

To apply the framework to our task of obstacle avoidance,
we characterize N ∈ N obstacles perceived by the robot with
the signed distance function (sdf):

sdf(x) = min
i∈{1,...N}

∥∥∥∥[pxpy
]
− ρi

∥∥∥∥−Ri (8)

where ρi ∈ R2 is the planar position of obstacle i and
Ri > 0 is the robot radius plus the obstacle radius. To reduce
chattering oscillation that can occur when the closest obstacle
switches, we smooth the SDF collision constraint to be:

h(xk) = λ(1− e−γsdf(xk)) (9)

where λ > 0, γ > 0 are positive constants controlling the
maximum magnitude and smoothness of safety. The entire
procedure can be seen in Algorithm 1, where e is the unit
direction towards the closest obstacle.

IV. EXPERIMENTS

We demonstrate the validity of SHIELD on the Unitree
G1 humanoid robot, aiming to show the method’s adaptable
conservativeness, performance, and robustness.



Fig. 5. SHIELD enforces safety in collision avoidance with adaptive conservatism. The A* planner path is not necessarily safe even it does not cross the
obstacle, thus naively following the path would result in collisions or scrapes. Nominal CBF, due to not accounting for the inaccurate reduced order model,
would also result in collisions or be extremely conservative.

Hardware Setup. The Unitree G1 humanoid robot has a
height of 1.32 meters and weighs approximately 40kg, with
23 actuated degrees of freedom. We employ an onboard
Jetson Orin NX for computation, a Livox Mid-360 LiDAR
for sensing the environment, and an Intel T263 to localize
the robot. Euclidean clustering [25] is applied to the LiDAR
pointcloud to locate obstacles of interest in the scene.

To test the generalization of SHIELD in deployment, we
conduct experiments with two different walking controllers:

1) built-in: the Unitree built-in controller [26]
2) custom: We train a custom RL locomotion controller in

IsaacLab [27] using standard rewards from [28].

Approximately 6 minutes of training data are collected for
each controller to train the CVAE for both the built-in and
custom controllers. We query the CVAE to update the mean
and covariance of the disturbance distribution at 0.83Hz, and
we filter the command velocity at 100Hz.

Learned Tracking. We first test the velocity tracking
capabilities of the SHIELD framework. In these experiments,
we send a pre-set sequence of velocity commands through
the framework to the controller and compare our resulting
velocities to the command sequence. We achieve noticeable
improvements in tracking as shown in Fig. 4.

Obstacle Avoidance. First, we conduct controlled experi-
ments with fixed obstacles. We define success as the robot
walking past obstacles without making contact. We model the
detected obstacles as cylinders of radius 0.3m and the robot
to have a safety margin of 0.38m from the center of mass.
To navigate, we first use A* [29] to first plan a path through
free space, we then generate nominal velocities by directing

the robot from its current position to the next node on
the path and filter the commanded velocities with SHIELD.
We present both single-obstacle and multi-obstacle cases.
In single-obstacle experiments, naively following the A*
path alone does not completely avoid obstacles due to state
tracking errors. The nominal DTCBF filter, being unaware
of the dynamics residual, either collides into the obstacle
or exhibits extreme conservative behavior with α = 0.99.
However, SHIELD enables the robot to completely bypass
the obstacle. We observe similar behavior in multi-obstacle
scenarios, where SHIELD is able to adjust conservativeness
online to only enforce maximum safety conditions when
needed, resulting in more dynamic behavior. The results of
these experiments can be seen in Fig. 5.

Unstructured Outdoor Environment. We also perform
experiments in unstructured outdoor environments for further
validation. In these tests, a user provides joystick inputs to
the robot for safety reasons and would either control the
robot to walk directly towards people or provide no input
and let the robot stay in place unless people encroach on its
safety boundary. These experiments can be seen in Fig. 1
and Fig. 2 and the experimental video [30].
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