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Abstract— Ensuring safety in crowded environments is chal-
lenging due to the inherent uncertainty in obstacle behavior. In
this work, we propose an adaptive risk controller based on the
Conditional Value-at-Risk Barrier Function (CVaR-BF), where
the risk level is automatically adjusted to take the minimum
necessary risk. This reduces the overly conservative influence of
uncertainty estimation while maintaining robust performance
in terms of safety and optimization feasibility. Additionally,
we introduce a dynamic zone-based barrier function which
characterizes the collision likelihood by evaluating the relative
state between the robot and the obstacle. By integrating risk
adaptation with this new function, our approach adaptively ex-
pands the safety margin, enabling the robot to proactively avoid
obstacles in highly dynamic environments. Comparisons with
baselines and different estimated uncertainty demonstrate that
our method outperforms existing safe navigation approaches,
and validate the effectiveness of our proposed framework.

I. INTRODUCTION

Robot navigation in crowded, dynamic environments re-
mains a fundamental challenge to safety specifications and
actionable safe control due to “intangible” nature of obstacle
uncertainty, such as awareness, reaction delay, or unpre-
dictable motions. Conditional Value-at-Risk (CVaR), which
quantifies the expected risk in the tail of a distribution,
offers a principled way to manage such uncertainties [1].
Recent works successfully combine CVaR with Control
Barrier Functions (CBFs) [2], [3] to enforce probabilistic
safety constraints, e.g. [4]–[7]; However, performance of
CVaR-Barrier Functions (CVaR-BF) based safety controllers
heavily depends on accurately estimating the tail behavior of
uncertainty distributions.

Many existing approaches quantify prediction uncertainty
heuristically, often assuming Gaussian distributions or sim-
plified agent models, failing to capture the complexity of
real-world interactions [8]. Data-driven trajectory predictors
such as RNNs or LSTMs typically provide no direct measure
of uncertainty, increasing the risk of unsafe control decisions.
Recent efforts have explored conformal prediction in [9],
[10], to provide calibrated bounds on prediction errors from
online data streams. While these methods offer theoreti-
cal guarantees and enhance safety margins, their inherent
conservatism, especially when high confidence levels are
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Fig. 1: Comparison of fixed vs adaptive risk levels with and without a
dynamic zone.

required, can result in overly cautious controllers, often
rendering the optimization problem infeasible in practice.
This challenge highlights the need to design controller that
can adaptively accommodate potential discrepancies between
the actual distribution of obstacle motion and its predicted
distribution.

Therefore, we propose a risk-adaptive navigation ap-
proach, a novel extension of the CVaR-BF framework that
dynamically adjusts the risk level to maintain safety while
ensuring trajectory feasibility. 1) Our controller integrates
a conservative uncertainty quantification results to provide
real-time bounds on obstacle motion uncertainty. Rather
than relying on a fixed risk level, it begins with a risk-
averse setting and incrementally increases the allowable risk
until a feasible solution is obtained. This adaptive strategy
enhances trajectory feasibility, mitigates the overly conser-
vative influence of uncertainty estimation while ensuring
CVaR safety is guaranteed at least a pre-defined threshold.
2) Besides, in highly dynamic scenarios, where obstacles
move unpredictably and rapidly, the robot requires sufficient
time and space to respond and adjust its risk level. overly
conservative strategies can limit feasible solutions in crowded
environments [11]–[13], so an approach that maintains safety
without excessively restricting the decision space is essential.
To this end, we introduce the concept of a “Dynamic Zone”,
where the original safety distance is adaptively expanded
based on the relative position and velocity between the robot
and its surrounding obstacles. The robot adjusts its trajectory
before nearing obstacles, but only when needed to avoid
unnecessary conservatism, while also extending the risk-
adaptive range.



II. PRELIMINARIES

Consider a discrete-time control system:

xk+1 = f(xk,uk), (1)

where xk = [pk,vk]
T is the robot’s state (position and

velocity), and uk is the control input. Define the safe set
given the obstacle states as

S = {xk ∈ X : h(xk,x
o
k) ≥ 0}. (2)

h : X × O → R is the CBF that depends on both the
system state xk and the obstacle state xo

k, where we assume
perfect measurements of the states at the current time step k.
However, the CBF at the next time step k+1 considering the
predicted state, which is denoted as hk+1 := h

(
xk+1, x̂

o
k+1

)
,

becomes a random variable due to the uncertainty in the
obstacle state x̂o

k+1 = g(xo
k) + wk, where wk represents

stochastic disturbance. We sample noise wk in a finite set
W = {w(1),w(2), . . . ,w(L)} with the probability mass
function pj , j ∈ {1, . . . , L}. W can be estimated through
some uncertainty qualification method, e.g., conformal pre-
diction [10]. Then, the probabilistic safety condition requires
that:

P(h(xk+1, x̂
o
k+1) ≥ 0) ≥ 1− β, (3)

where β defines the risk level. A coherent risk measure
capturing the expected loss in the worst-case tail of the dis-
tribution can be used to achieve this probabilistic constraint
[14]:

CVaRβ(hk+1) := E[hk+1 | hk+1 ≤ VaRβ(hk+1)] ≥ 0.
(4)

Further extension of this constraint is using CVaR-BF [4]:

CVaRβ(hk+1) ≥ (1− γ)hk, (5)

where 0 < γ ≤ 1 controls the safety margin. We incorporate
this constraint into an optimization to compute minimally
invasive safe controls:

min
uk

∥uk − ūk∥2 s.t. CVaRβ(hk+1) ≥ (1− γ)hk. (6)

Note that the expectation in the CVaR formulation can
be approximated by sampling noise [15], which offers
robustness to non-Gaussian and heavy-tailed uncertainties.
Therefore, the above optimization problem can be formulated
as follows.

min
uk∈U,ζ∈R

∥uk − ūk∥2

s.t.−
(
ζ +

1

β

L∑
j=1

pj
[
−hj,k+1 − ζ

]
+

)
≥ (1− γ)hk,

∀ j ∈ {1, . . . , L}.

where ζ is a real-valued auxiliary variable that searches for
an optimal threshold.

III. ADAPTIVE RISK LEVEL OF CVAR-BF

A. Safety and Feasibility Analysis

We identify a key issue in CVaR-BF constraint: the tuning
hyper-parameter, the risk level β, presents a trade-off be-
tween the safety and feasibility of the optimization problem
in (6). Safety Analysis: (1) higher β relaxes the CVaR-BF
constraint, allowing the robot to operate closer to obstacles,
albeit at the expense of increased risk; (2) lower β enforces
a tighter CVaR-BF constraint, yet may cause a higher chance
of infeasibility and over-conservative decisions. Feasibility
Analysis: Since the CVaR is monotonically increasing with
respect to β according to its definition in (4), increasing β
relaxes the safety constraint and consequently enlarges the
feasible set. Therefore, if the safety constraints are too strict
(small β), the intersection of feasibile space may be empty;
if they are too loose (large β), safety may be compromised.

B. Adaptive Risk Level

Define the adaptive risk level at each time k as

βk := min{β ∈ (0, βu] | Uk
β ̸= ∅}, (7)

where βu is the fixed risk level used in the standard CVaR
formulation as in (4) and here we use it as the upper bound
of the adaptive risk level.

Definition 1 (Risk Adaptive CVaR Barrier Function). Con-
sider the discrete-time system (1) and an adaptive risk level
βk at each time step k as defined in (7). A function h : Rn →
R is called a Risk Adaptive CVaR Barrier Function for the
safe set S in (2) if there exists a constant γ ∈ (0, 1] such
that for each xk ∈ Rn, there exist a uk ∈ Rm such that,

CVaRk
βk

(hk+1) ≥ (1− γ)hk, ∀xk ∈ X . (8)

The notion of the risk adaptive CVaR barrier function
allows to initialize the risk level with a conservative value
(close to zero), and then incrementally increase it when
necessary. A trade-off is needed only when the robot nears
obstacles, while risk level remains low elsewhere to main-
tain a high probability of safety throughout the trajectory,
achieving higher CVaR-safety.

Theorem 1 (CVaR-Safety with Adaptive Risk Level). Con-
sider the discrete-time system (1) and the safe set S (2).
Let βu ∈ (0, 1) be a fixed upper-bound risk level, and let
βk ∈ (0, βu] be an adaptive risk level at time k as defined
in (7). Then, S is at least CVaR-safe with respect to the risk
level βu if there exists a risk adaptive CVaR barrier function
as defined in Definition 1.

IV. DYNAMIC SAFETY ZONES FOR CVAR BARRIER
FUNCTIONS

Effective risk management is essential for robotic naviga-
tion, particularly in environments with high-speed obstacles
and uncertainties that shorten reaction times and increase
collision risks. Fig. 1a shows that using a fixed risk level
can render the problem infeasible when the robot approaches
an obstacle. In contrast, Fig. 1b employs an adaptive risk



level (as described in Sec. III-B) that starts conservatively
prompting the robot to initiate a turn early, and then relaxes
the safety requirements as needed. However, without incor-
porating a dynamic zone that provides a virtual radius (an
extra buffer), this risk adjustment can ultimately compromise
safety and lead to collisions. Therefore, as shown in Fig. 1c,
the combination of an adaptive risk level with a dynamic
zone not only facilitates early obstacle avoidance but also
provides greater flexibility for risk adjustments, thereby
relaxing constraints and expanding the feasible space.

A. Dynamic Zone–Based Barrier Function
Classical CBFs typically rely on a distance-based mea-

sure, denoted as hD, that may lead to myopic behavior,
causing the robot to navigate too close to obstacles and
thereby increasing the risk of collision. Functions based on
velocity obstacles or collision cones [11]–[13], denoted as
hC, incorporate the relative motion between the robot and
the obstacle, which can be overly conservative, rendering
the navigation problem infeasible [13]. Define a dynamic
zone–based barrier function that leverages the predicted
relative state:

hZ
k := ∥pk − po

k∥2 −R2
safe

(
1 + ∆k

)
,

∆k =

(
− ⟨prel

k ,vrel
k ⟩

∥prel
k ∥ ∥vrel

k ∥

)
+

,
(9)

where (·)+ denotes the nonnegative part, i.e., max{0, ·},
ensuring that ∆k ∈ [0, 1] Instead of imposing a direct
constraint on the relative angle which can lead to unnecessary
obstacle avoidance when the robot is far away [13], our
approach modulates the safety zone only when necessary.
When the robot and obstacles are far apart, even if the safety
zone radius is expanded, it does not significantly influence
the robot’s behavior due to the large relative distance. Thus,
this strategy prevents unnecessary avoidance of obstacles and
avoids the overly conservative behavior that can result from
rigid angle constraints.

B. Probabilistic Safety Guarantee
We further can get the conclusion that a dynamic zone-

based barrier function expands the adjustment space of the
βk value, while also ensuring that the given risk level βu is
met. The key insight is that the dynamic zone represents a
larger, dynamic, yet virtual safety distance, rather than the
actual physical separation between the robot and an obstacle
(see Fig. 1c).

Lemma 1 (Equivalence of Probabilistic Safety Guarantee).
Given a safe set S (2) that is CVaR-safe under the risk
adaptive CVaR-BF defined in Definition 1 with the distance-
based barrier function hD and a fixed risk level upper bound
βu. Then, by adopting the dynamic zone–based barrier
function hZ together with the newly derived upper bound
β̄u for the adaptive risk level, the resulting safety guarantee
is equivalent to that provided by the original CVaR-BF. In
other words, the safe set S remains CVaR-safe with the same
probabilistic guarantee.

V. SIMULATIONS

A. Experimental Setup

1) Agent Settings: We evaluate our proposed method
using a widely adopted crowd navigation simulation en-
vironment within a 12m × 12m space [16] (see Fig. 2).
Obstacles are modeled using a single-integrator dynamic
system with position uncertainty: p̂o

k+1 = po
k+1 + wp,k,

where wp,k ∼ N (0,Σp), with Σp = diag(σ2, σ2) represent-
ing the position noise covariance. We vary the uncertainty
level by setting σ ∈ {0.0, 0.025, 0.05, 0.075, 0.15}, and
simulate wp,k within ±3σ per axis. We let the obstacles
follow the uncooperative behavior, same settings with work
in [17], meaning it only avoids collisions with other obsta-
cles. Their maximum speeds along each axis are chosen
uniformly from {0.3, 0.6, 0.9, 1.2}m/s, and their radii are
selected from {0.3, 0.4, 0.5}m. The robot is modeled as a
double integrator, with dynamics given by For each axis, the
maximum acceleration is restricted to be less than 3m/s2,
and the maximum velocity is limited to under 2m/s. The
time step is set to ∆t = 0.1 s. The local sensor range is 5m.
The results can be found in the video here.

B. Benchmark Comparisons

We first test our method with assuming accurate estimated
uncertainties distributions: a normal distributed around zero
mean with standard deviation same with simulated noise. We
compare our method with the following baselines:

1) CVaR-BF Methods: distance-based CVaR-BF with
fixed risk levels (β = 0.01 or 0.99) [4] (CVaR(Dist)).

2) CBF Methods: collision cone-based approaches [11],
including a robust control for worst-case scenarios
(RCBF(Cone)) and a standard CBF-based control with-
out explicit uncertainty handling (CBF(Cone)).

3) RL Methods: socially attentive reinforcement learning
(CrowdNav) [16] and its extension incorporating pre-
dicted obstacle intentions (CrowdNav++) [17].

4) Geometric Methods: reciprocal velocity obstacles for
collision-free motion (ORCA) [1].

C. Impact of Uncertainty Estimation

We then evaluate how different estimated uncertainty
bounds affect controller performance. Following the ap-
proach in [4], we consider a uniform distribution over a
bounded disturbance set W for wp,k. While W can be
estimated online using uncertainty quantification techniques
[10], we fix it as a conservative bounded region in this
simulations to isolate and validate the impact of our proposed
adaptive risk controller. In next step work, we will incorpo-
rate real-time uncertainty estimation to dynamically bound
obstacle motion uncertainty to further verify the performance
of our risk adaptive controller.

https://drive.google.com/drive/folders/16KkMh_0OrakLjcN-LMkxucwrNrNRzAsi


Fig. 2: Visualization of robot trajectories and associated metrics for the whole trajectory in an environment with 20 uncooperative obstacles. (a) Snapshot
of the trajectory at a critical time step. (b) Risk level βk over time. (c) Control input over time. (d) CBF value over time (e) Distance to closest obstacle
over time. In (a), when the robot and an obstacle approach each other with high relative velocity, the dynamic safety margin will expand, i.e., ∆k > 0
making robot proactively avoid obstacles. As shown in (b), βk will also increase where feasible space is limited, but it remains below the upper bound β̄u,
ensuring safety without being overly conservative. (e) shows robot maintains a safe distance from obstacles due to dynamic zone-based barrier function.
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