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Abstract— This paper addresses the problem of robot naviga-
tion in mixed geometric and semantic 3D environments. Given
a hierarchical representation of the environment, the objective
is to navigate from a start position to a goal while mini-
mizing computational cost and satisfying task-specific safety
constraints described by semantics. We introduce Hierarchi-
cal Class-ordered A* (HCOA¥*), an algorithm that leverages
the hierarchical structure of 3D Scene Graphs (3DSGs) for
efficient and safe path-planning. We use a total order over
the semantic classes and prove completeness of the algorithm.
To incorporate safety constraints on the upper-layers of the
hierarchical environment, we propose two methods for higher-
layer node classification based on the semantics of the lowest
layer: a Graph Neural Network-based method and a Majority-
Class method. We validate our approach on the uHumans2
3DSG dataset [1], demonstrating that HCOA* reduces node
expansions by 25% and computational time by 16% compared
to the state-of-the-art baseline, while finding the optimal path
and effectively avoiding unsafe objects and rooms.

I. INTRODUCTION

As robotic sensing technologies advance, enabling robots
to perceive vast and diverse information, two fundamental
questions arise: What information from this extensive data
stream is most important for a given task, and how can
the robot effectively utilize this information for decision-
making? Hierarchical semantic environment representations,
such as 3D Scene Graphs (3DSG) [2]-[4], provide rich and
structured abstractions that mirror human way of thinking,
facilitating the selection and organization of information.

Previous research in hierarchical path-planning has primar-
ily addressed the first question [S]-[8]. In [5] the authors
introduce Hierarchical Path-Finding A*, a hierarchical A*
variant for grid-based maps. Their approach partitions the
map into clusters with designated entrance points, which are
used for high-level path-planning. Similarly, the authors in
[6] propose a hierarchical graph search algorithm for graphs
with edge weights represented as intervals.

Semantic path-planning has focused on the second ques-
tion by incorporating semantics into the decision-making
process. Safety constraints can be expressed as relation-
ships between different semantic categories and implicitly
enforced by the path-planning algorithms. In [9] the au-
thors introduce a weighted function that combines the edge
cost and the semantic class to determine the optimal path.
However, computing this weighted function requires global
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Fig. 1: 3D Scene Graph generated from the uHumans?2 office
scene dataset [1] using Hydra [3]. The graph comprises five
layers, as shown in the figure. Room nodes are denoted as
R(-), while building nodes are represented as B(-).

graph properties, which can be computationally demanding.
To address this limitation, [10] and [11] propose Class-
ordered A*/LPA*, two extensions of traditional A* [12] that
efficiently incorporate semantics, based on a total order over
the available classes. Building on [6] and [10], we develop
a hierarchical class-ordered path-planning algorithm.

Navigation within 3DSGs has also been explored in prior
work. In [13], the authors address Task and Motion Planning
in 3DSGs using a three-level hierarchical planner. Their
approach focuses on optimizing task planning, while path-
planning operates on the unpruned 3DSG. Finally, learning-
based methods have also been leveraged to facilitate task
execution in a 3DSG. In [14] and [4], the authors propose the
Neural Tree. Although effective in classifying higher-layer
nodes in 3DSGs, this approach requires a tree decomposition
of the input graph, which increases computational time.

Main Contributions: Our approach integrates task seman-
tics directly into the path-planning process within a unified
algorithm. Our key contributions are as follows:

1) We introduce Hierarchical Class-ordered A*, a novel
hierarchical semantic path-planning algorithm for nav-
igation in 3DSGs.

2) We propose two methods for node classification on
the higher layers of the hierarchy based on underlying
semantic classes: a GNN-based method and a majority-
class method.

3) We validate our approach on a publicly available 3DSG
dataset.



II. PRELIMINARIES

Let G = (V,E,K) be a 3D Scene Graph (3DSG), as
in Figure 1, with n layers (disregarding mesh and objects
layers), where V is the set of nodes, E C V x V is the
set of edges, and IC = 1,... K is a set of semantic classes
ordered by decreasing priority. We denote the set of layers
as L, where / = 0 is the places layer and ¢/ = n is
the highest layer (root). Each layer ¢ forms a connected
weighted subgraph G! = (V* E* K), with an associated
weight function w : B¢ — R*. We assume that each node
in layer ¢ — 1, for £ = 1,...n, is connected to exactly
one node in layer ¢, which we refer to as its parent node.
More generally, we define an ancestor as a node’s parent or
any higher-layer predecessor in the hierarchy. We define the
projection function p : V' x L — V that maps each node to
its corresponding ancestor in layer /.

Each node in ¢ = 0 is assigned a semantic class based
on perception data and safety constraints using the function
3% : VO — K. We extend the labeling function ¢?, to layers
¢ # 0. Details on the computation of ¢¢, for £ # 0 will be
given in Section V. Additionally, we introduce the function
#% : E* — K, which assigns semantic classes to the edges
of G. Specifically, we define the edge classification function
for an edge e = (v,u) as ¢%(e) = max(¢f, (v), d% (u)),
thereby overestimating the edge class.

Let H(vf,vé) denote the set of all acyclic paths in G*
from v € V' to v) € V¥, and let II; be the subset of II in
which the least favorable edge class is exactly k. Formally,

I, = {r: N(m, k) > 0 and N(m, k') = 0,Vk' >k}, (1)

where N(m, k) = |{e € 7 : ¢%,(e) = k}|. We further define
i C Iy as IIi, = {7 € Il : N(m, k) = i}. To enable a
consistent comparison of paths across different classes, we
impose a total order such that k < ¢ = I < IIJ for all 4,
and i < j = IIL < II). This order ensures that any two
paths with the same start and goal nodes can be compared.

III. PROBLEM FORMULATION

Consider a mobile robot tasked with navigating a complex
3D environment where certain regions have lower traversal
priority. The robot is provided with a 3DSG of the environ-
ment, where the semantic classes of the nodes in layer £ = 0
are assigned based on perception and tailored to the specific
task and safety constraints (e.g. avoid certain areas and
objects). Let vy € VY and v, € V0 denote the robot’s starting
and goal nodes, respectively. The objective is to determine
the shortest path within layer ¢ = 0 while minimizing
traversal through the least favorable edges. Formally,

™ (vs,vg) = argmin > w(e), (2a)
well* (vs,vg) €ET
II* = min min H};, (2b)

ieN ke
where II* is the set of paths obtained by minimizing over
all possible classes k and number of least favorable class i.
However, due to computational constraints, the robot seeks
to avoid a full graph search over GY, as its structure can be
large, potentially rendering the search intractable.

Algorithm 1 Hierarchical Class-ordered A* (HCOA¥*)
Input: G, vs, vy, h(v)
Output: 7°
1: forall / =/¢,,...,¢4 do
2 vl p(vs, €); vl < p(vg, 0)
3 g(vg) <05 O(vg) < 0-1g; f(vf) ¢ h(vy)
4 g(v?) « o0; O(v') 00 1k, Yo' € G\ {v}
5: PredecessorMap <— & > Track path reconstruction
6
7
8
9

Q + {vi} > Initialize priority queue
while Q is not empty do

v <—POPNODE(Q); Q + Q \ {v}

if v=0v. then

10: 7t < PATH(PredecessorMap, Vg)
11: BREAK

12: end if

13: for all u € neighbors(v, G*') do

14: 0(v,u) < SEMANTICS(4%, (v), G (u))
15: if (0(v) +6(v,u) < 6(u)) or
16: (6(v) + 6(v,u) = 6(u) and

17: g(v) + w(v,u) < w(u)) then
18: Q<+ QU {u}

19: PredecessorMap[u] < v

20: O(u) « 0(v) + (v, u)

21: g(u) < g(v) +w(v,u)

22: fw) « g(u) + h(u)

23: end if

24: end for

25: end while

26: for all ¢/ < ¢ do

27: G —{veG” :pt) et}

28: end for

29: end for

30: return 7°

A. Problem Statement

We propose a hierarchical semantic path-planning algo-
rithm for robot navigation. The algorithm operates top-down
across the layers of the 3DSG, iteratively computing the
optimal semantic path at each layer while pruning nodes
that are not included in the selected path. Additionally,
we introduce two methods for semantic class prediction of
higher-layer nodes: a Graph Neural Network (GNN)-based
approach and a majority-class method.

IV. PATH-PLANNING
A. Hierarchical Class-ordered A*

We introduce Hierarchical Class-ordered A* (HCOA¥*), a
hierarchical semantic path-planning algorithm for 3DSGs.
The algorithm begins by finding a path in layer { = n — 1
and then refining it by recursively applying the same process
at the lower levels of the hierarchy. At each layer, the
algorithm utilizes Class-ordered A* (COA¥*) [10], which
finds the shortest path while minimizing the number of least
favorable edges through lexicographic comparison.

HCOA* is presented in Algorithm 1. We use the function
h : V. — R to denote an admissible heuristic function,
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Fig. 2: Proposed GNN architecture for node P € Ve = 0) classification, utilizing the semantic classes (green, blue, red)

of nodes in ¢ = 0.

similar to standard A*. Lines 2—6 initialize the variables.
Lines 7-24 executes a simplified version of COA* [10].
Notably, Line 14 computes the semantic class of the edge
(v,u) based on the semantic classes of nodes v and w.
Additionally, G (u) is the induced subgraph of node u in
layer £ = 0 given by G (u) = {u/ € VO : p(u/, ) = u}.
Finally, Lines 25-27 refine the path by pruning nodes that
do not share an ancestor with the paths in the higher layers.

B. HCOA* Completeness

The following proposition establish the algorithm’s com-
pleteness. We assume that the assumptions for completeness
and optimality of COA* hold [10].

Proposition 1: Let G be an 3DSG and let nodes v, vy €
V0. HCOA¥* is complete, meaning that it is guaranteed to
find a path 7% = 7(vs,v,), whenever one exists.

Proof: Let 7¥ exists. The structure of G ensures that
for each layer £ € L, there exists a corresponding path 7¢ =
m(vE, vf), where vf = p(vs, €) and v}, = p(vy, £).

At each subgraph G¢, COA* is guaranteed to find the
optimal path 7%, if one exists [10]. Suppose, ad absurdum,
that the graph pruning performed in Lines 25-27 results
in TI(vi 1, véfl) = o, preventing COA* from finding
a solution in layer ¢ — 1. This would imply that 7% is
disconnected, contradicting the completeness of COA*. M

V. SEMANTIC CLASS PREDICTION

Let gbf/ : V¥ — K be the function that assigns semantic
classes to nodes in the layers ¢ # 0. Ideally, given an optimal
path * (s, v4) computed in G, the semantic class of a node
P € V% is determined by ¢, (P) = maxycq(p) d% (u),
where 7'(P) = 7*(vs,v4) N GO This process follows a
bottom-up approach, necessitating the computation of the
optimal path in layer ¢ = 0. Given that HCOA* works top-
down, we seek an alternative method.

A. Graph Neural Network Method

We formulate this problem as a supervised node classifica-
tion task and design a GNN to predict the semantic classes.
We construct a dataset D = {G (P), ¢¢,(P)} by selecting
nodes P € V¢ for £ # 0 and extracting their induced
subgraphs GO,(P). We then assign semantic classes to the
nodes in G’ (P) based on the given task. Next, we execute

COA* on this graph and compute ¢%,(P), where the starting
location is a border node. A border node v* € V' of layer /
is defined as a node that shares an edge with another node
from a different ancestor. Formally, there exists e = (v*, u*)
where v*,u* € V° and p(v*, ) # p(u*, ). Border nodes
play a crucial role in the classification of P € V*.

The proposed model is illustrated in Figure 2. We use
border nodes as input features for the network, which are
concatenated with the semantic classes of the nodes in G’
A 2-layer MLP is used to preprocess the input. The GNN
consists of three layers, each incorporating a Graph Convo-
lutional Network (GCN) operator [15] for message passing,
followed by batch normalization and a ReLU activation.
To mitigate oversmoothing, we introduce skip connections
between the GNN layers. Additionally, we apply average
pooling to handle environments of varying sizes. The pooled
representation is then processed through another 2-layer
MLP, followed by a softmax function. Finally, we use cross-
entropy as the loss function for node classification.

B. Majority-Class Method

The Majority-Class (MC) method computes the semantic
class of higher-layer nodes by counting the occurrences of
each semantic class among the nodes in the induced subgraph
G (P) and selecting the most frequent one. That is,

&% (P) = arg max Ny (G° (P), k), 3)
kel

where Ny (G, k) = [{v € G: ¢ (v) = k}|.

VI. SIMULATIONS

We perform two sets of simulations on the publicly
available uHumans2 office 3DSG, shown in Figure 1 and
constructed using Hydra [3]. The places layer £ = 0 is a
subgraph where each node represents an obstacle-free loca-
tion. The rooms layer ¢ = 1 consist of nodes representing
room centers. We consider a set of three semantic classes /C,
ordered by decreasing priority: 1 (Green), 2 (Blue), 3 (Red).
We utilize the objects layer to identify objects and assign
semantic classes to the surrounding place nodes.

In the first section, we present the comparison between
GNN and the MC approach. The second section demon-
strates a path-planning scenario and compares HCOA*



TABLE I: Room Node Classification.

Metrics GNN MC

Training Time (min) 90 -
Validation Accuracy (%) 67.64 | 30.36
Test Accuracy (Rooms with 1-20 bn) (%) | 82.50 | 54.25
Test Accuracy (Rooms with 21-30 bn) (%) | 65.00 | 19.75
Test Accuracy (Rooms with 31-40 bn) (%) | 64.00 | 19.25
Test Accuracy (Rooms with 41-50 bn) (%) | 59.00 | 24.50

TABLE II: Path-Planning on uHumans2 Office Scene.

Metrics HCOA*-GNN | HCOA*-MC COA*
Expanded Nodes 412 412 549
Time (10~7s) 38.8 +47.1 43426 |[51+25
Optimal Path v v v

against COA*. HCOA*-GNN utilizes the best GNN model
from the previous training phase for room inference. To
evaluate the performance of room classification, we compute
the accuracy, which measures the proportion of correctly
classified rooms in each dataset. For the path-planning sce-
nario, we compute the computational time of the algorithms
along with the number of expanded nodes.

A. Room Node Classification

In this section, we present the results from predicting
the semantic class of room nodes. To generate the dataset,
we constructed 14,000 graphs by extracting the induced
subgraphs from all rooms and randomly assigning semantic
classes to nodes within a disk of randomly chosen center
locations, repeating this process 2,000 times per room. Then,
we ran COA* to determine the semantic class of the room,
starting from a randomly selected border node. The dataset
was split into 80% training, 10% validation, and 10% testing.
The model was trained using the Adam optimizer [16] with
a learning rate of 1072, over 1,600 epochs, a dropout rate of
0.2 and a batch size of 64. The GNN and MLP layers contain
32 neurons. Table I summarizes the results of room node
classification. The results indicate that the GNN approach
outperforms significantly the MC method across both the
validation and test sets. Additionally, the training accuracy
of the GNN is 67.94%.

B. Path-Planning on uHumans2 Office Scene

In this section, we demonstrate a path-planning scenario in
the 3DSG shown in Figure 1. The starting node vy is in R(2),
while the goal v, is in R(1). For the environment’s semantic
classes, we assign @9, (v) = 2, for all v € R(0) (e.g., R(0)
represents a typically crowded area, which the robot should
try to avoid). Additionally, we define gb(‘)/(v) = 3, for all
v € C, where C' is the set of place nodes located within a
disk centered around specific objects. Formally, C = {v €
G° : ||z(v) — z(0)|]|]2 < r, Yo € O}, where z(-) denotes
the location of a place node v or an object o, and O is a
set of objects. In this scenario, we set 7 = 3m and define
O as the set of all computers in the 3DSG. This means that
the robot should avoid passing too close to computers for
safety reasons. Figure 3(a) depicts the places layer of the
environment along with the start and goal nodes.

R(6)

RO) R(3)

R(1)

(©) (d

Fig. 3: (a) Places subgraph of the uHumans2 office scene
(52mx45m) with the assigned semantic classes. The starting
node is denoted by S, and the goal by G; (b-d) The path of
each algorithm is shown in bold black. Expanded nodes are
depicted in regular black, while unexpanded nodes in gray:
(b) Path of COA* on the places; (c) Path of HCOA* on the
rooms; (d) Path of HCOA* on the places.

The computed path of COA* in the places layer is
shown in Figure 3(b). Figures 3(c)-(d) illustrate the results of
HCOA*. Table II presents the results. HCOA* demonstrates
a 25% reduction in expanded nodes compared to COA*.
The computational time of the algorithms is calculated over
1,000 runs. We observe that HCOA*-MC achieves the best
performance in terms of computational efficiency, reducing
the execution time by 16% compared to COA*. However,
HCOA*-GNN has the highest computational time, as GNN
inference can be more time-consuming than graph search in
small graphs (the entire places subgraph contains only 1,314
nodes). Finally, all three approaches successfully compute
the optimal path in the places layer, as shown in Figure 3.

VII. CONCLUSIONS

In this paper, we addressed the problem of robot nav-
igation in 3D geometric and semantic environments. We
introduced Hierarchical Class-ordered A* (HCOA*), an al-
gorithm that exploits a total order over semantic classes to
guide the search process while significantly reducing com-
putational effort and satisfying safety constraints. To classify
higher-layer nodes, we proposed two methods: a Graph
Neural Network-based method and a Majority-Class method.
Through simulations on a 3D Scene Graph, we showed that
HCOA* effectively reduces computational cost compared to
a state-of-the-art method. Specifically, our results show that
HCOA* finds the optimal path while reducing the number
of expanded nodes by 25% and achieving a 16% reduction
in computational time for a typical 3DSG with 1,314 nodes.
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