
1

Hierarchical Temporal Logic Specifications for Abstract Safety Tasks
Xusheng Luo1 and Changliu Liu1

Abstract—Robots operating in human environments must sat-
isfy abstract safety constraints—subtle behaviors that go beyond
avoiding collisions, such as not reaching over laptops when
handling liquids. These constraints are difficult to formalize with
traditional task planning methods. We propose Hierarchical LTL
on finite traces (H-LTLf) as a specification language for such
tasks, enabling modular and interpretable task definitions. To
support this, we develop a bottom-up planning algorithm that
performs Simultaneous Task Allocation and Planning (STAP)
over structured task graphs. Our approach improves scalability
and is validated through scenarios involving service robots under
complex safety requirements.

I. INTRODUCTION

Imagine a typical office scenario: a human working at a
desk asks a humanoid robot to refill their water. The robot
approaches the desk to retrieve the cup, and two possible
behaviors emerge. In the first, the robot reaches its arm directly
over the laptop to grab the cup. In the second, it walks to
the side of the desk before extending its arm. Clearly, the
latter is more desirable—it minimizes the risk of damaging the
laptop in case the cup slips or water spills. This situation raises
an interesting question: how can we formally and abstractly
specify these types of safety constraints, which are more subtle
than conventional collision avoidance?

Formal methods, known for their mathematical rigor, offer
powerful tools to specify, develop, and verify both hardware
and software systems [1]. One promising direction is to em-
ploy formal specification languages—such as Linear Temporal
Logic (LTL)—to express high-level task requirements. LTL
is based on atomic propositions that can be grounded in
the robot’s environment, and it supports rich temporal and
logical expressions capable of capturing complex task-level
constraints. In this work, we explore service robotics tasks that
are subject to various safety-related constraints. For instance,
a robot collecting trash should avoid crowded public areas,
and a robot recording a meeting should ensure the camera is
turned off when outside the meeting room. While temporal
logic offers expressive power for task specification, it also
introduces significant computational challenges. For example,
encoding an LTL formula typically requires translating it into
an automaton—a graphical representation of the logic. As
shown in [2], a task involving the collection of five keys
followed by opening five doors resulted in an automaton with
65 states and 792 edges, and the conversion alone took nearly
30 minutes. Similarly, in our experiments, we found that gener-
ating an automaton for a complex task could not be completed
within an hour. This computational bottleneck stems from the

1Xusheng Luo and Changliu Liu are with Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, USA (e-mail: {xushengl,
cliu6}@andrew.cmu.edu)

standard approach of encoding all task requirements into a sin-
gle, flat LTL formula. Such monolithic specifications become
intractable as task complexity grows. However, many robot
tasks exhibit a natural modularity and can be decomposed
into loosely coupled subtasks. Cognitive studies indicate that
humans also prefer hierarchical task representations, as they
enhance interpretability, allow for easier tracking of progress,
and simplify local modifications without disrupting the entire
plan [3, 4].

Motivated by this, we introduce a hierarchical extension of
a widely used formalism—Linear Temporal Logic on finite
traces (LTLf) [5]. Unlike standard LTL, LTLf is satisfied
over finite sequences, making it particularly well-suited for
modeling and reasoning about finite-horizon tasks commonly
encountered in robotics. In this paper, we first formalize the
syntax and semantics of Hierarchical LTLf (H-LTLf). We
then develop a bottom-up planning algorithm that operates
over a product graph combining the environment and the task
structure. This approach enables Simultaneous Task Allocation
and Planning (STAP) and improves scalability by leveraging
the inherent structure of robot tasks.

Contributions The contributions are listed as follows:
1) We introduce a hierarchical form of LTLf that is capable

of specifying abstract safety tasks;
2) We develop a search-based planning algorithm, achieving

simultaneous task allocation and planning for multi-robot
systems;

3) We conduct extensive comparative simulations focusing
on service tasks to showcase the efficacy of the hierar-
chical temporal logic specifications.

II. PRELIMINARIES

Notation: Let N denote the set of all integers, [K] =
{0, . . . ,K} and [K]+ = {1, . . . ,K} represent the sets of
integers from 0 to K and from 1 to K, respectively, and | · |
denote the cardinality of a set.

LTL [6] is a type of formal logic whose basic ingredients
are a set of atomic propositions AP , the Boolean operators,
conjunction ∧ and negation ¬, and temporal operators, next
⃝ and until U . LTL formulas over AP abide by the grammar

ϕ ::= true | π | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1 U ϕ2. (1)

For brevity, we abstain from deriving other Boolean and
temporal operators, e.g., disjunction ∨, implication ⇒, always
□, eventually ♢, which can be found in [6].

LTLf [5] is a variant of LTL that is interpreted over finite
sequences of states while maintaining the same syntax as
standard LTL. A finite word σ over the alphabet 2AP is defined
as a finite sequence σ = σ0σ1 . . . σh with σi ∈ 2AP for
i ∈ [h]. The satisfaction of an LTLf formula ϕ over a sequence
σ at an instant i, for i ∈ [h], is inductively defined as follows:

• σ, i |= π iff π ∈ σi.
• σ, i |= ¬ϕ iff σ, i ̸|= ϕ.
• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2.
• σ, i |= ⃝ϕ iff i < h and σ, i+ 1 |= ϕ.
• σ, i |= ϕ1 U ϕ2 iff for some j such that i ≤ j ≤ h, we

have that σ, j |= ϕ2, and for all k, i ≤ k < j, we have
that σ, k |= ϕ1.

An LTLf formula ϕ can be translated into a Nondetermin-
istic Finite Automaton:

Definition 2.1: (NFA) A Nondeterministic Finite Automaton
(NFA) A of an LTLf formula ϕ over 2AP is defined as a tuple
A(ϕ) =

(
QA,Q0

A,Σ,→A,QF
A
)
, where

• QA is the set of states;
• Q0

A ⊆ QA is a set of initial states;
• Σ = 2AP is an alphabet;
• →A ⊆ QA × Σ×QA is the transition relation;
• QF

A ⊆ QA is a set of accepting/final states.

A finite run ρA of A over a finite word σ = σ0σ1 . . . σh,
σi = 2AP , ∀i ∈ [h], is a sequence ρA = q0Aq

1
A . . . q

h+1
A such

that q0A ∈ Q0
A and (qiA, σi, q

i+1
A) ∈→A, ∀i ∈ [h]. A run ρA is

called accepting if qh+1
A ∈ QF

A.
The dynamics of robot r is captured by a Transition System:

Definition 2.2: (TS) A Transition System for robot r is a
tuple T (r) = {Sr, s

0
r,→r,APr,Lr} where:

• Sr is the set of discrete states of robot r, and sr ∈ Sr

denotes a specific state;
• s0r ∈ Sr is the initial state of robot r;
• →r ⊆ Sr × Sr is the transition relation;
• APr is the set of atomic propositions related to robot r;
• Lr : Sr → 2APr is the observation (labeling) function

that returns a subset of atomic propositions that are
satisfied, i.e., Lr(sr) ⊆ APr.

III. HIERARCHICAL LTLf

A. Syntax of H-LTLf

Definition 3.1: (Hierarchical LTLf) H-LTLf is structured
into K levels, labeled L1, . . . , LK , arranged from the highest
to the lowest. Each level Lk with k ∈ [K]+ contains nk LTLf

formulas. The H-LTLf specification is represented as Φ ={
ϕik | k ∈ [K]+, i ∈ [nk]+

}
, where ϕik denotes the i-th LTLf

formula at level Lk. Let Φk denote the set of formulas at
level Lk, and let Prop(ϕik) represent the set of propositions
appearing in formula ϕik. The H-LTLf follows these rules:

1) There is exactly one formula at the highest level: n1 = 1.
2) Each formula at level Lk consists either entirely of atomic

propositions, i.e., Prop(ϕik) ⊆ AP , or entirely of formu-
las from the next lower level, i.e., Prop(ϕik) ⊆ Φk+1.

3) Each formula at level Lk+1 appears in exactly
one formula at the next higher level: ϕik+1 ∈⋃

j∈[nk]+
Prop(ϕjk) and Prop(ϕj1k) ∩ Prop(ϕj2k) = ∅,

for j1, j2 ∈ [nk]+ and j1 ̸= j2.

For a formula ϕik at a non-highest level, we slightly bend the
notation to use ϕik to represent the same symbol at the higher
level Lk−1, which we refer to as composite proposition. ϕik

Fig. 1: The office building in a grid-based layout, where areas
d1 to d14 represent desks, m1 to m6 are meeting rooms, e
stands for the elevator, g for the garbage room, p for the printer
room, and k for the coffee kitchen. Areas marked as “public”
indicate public spaces. Obstacles are illustrated in gray. The
locations of robots are shown as numbered red dots.

represents not only the i-th formula at level Lk, but also the
corresponding composite proposition at level Lk−1. When ϕik
appears at the right side in a certain formula, we consider it
as a composite proposition. When it appears at the left side
as a standalone formula, we refer to it as a specification.

Example 1: (H-LTLf) We use the office environment de-
scribed in [7] for service tasks, as depicted in Fig. 1. This
30×7 grid map features 14 desk areas, 6 meeting rooms, and
several other functional rooms. Additionally, we distribute m
robots at various locations.

Scenario 1: The task is that robots are required to distribute
documents to desks d10, d7, and d5, and avoid public areas
while carrying the document. Let carry denote the action of
the robot carrying the document. Note that the task does not
assign specific robots. The standard LTLf specification is

ϕ = ♢(p ∧ carry U (d10 ∧⃝¬carry))
∧ ♢(p ∧ carry U (d7 ∧⃝¬carry)) (2)
∧ ♢(p ∧ carry U (d5 ∧⃝¬carry))
∧□(carry ⇒ ¬public)

The H-LTLf specifications are

L1 : ϕ1
1 = ♢ϕ1

2 ∧ ♢ϕ2
2 ∧ ♢ϕ3

2

L2 : ϕ1
2 = ♢(p ∧ carry U (d10 ∧⃝¬carry)) ∧ notpublic

ϕ2
2 = ♢(p ∧ carry U (d7 ∧⃝¬carry)) ∧ notpublic (3)

ϕ3
2 = ♢(p ∧ carry U (d5 ∧⃝¬carry)) ∧ notpublic

notpublic := □(carry ⇒ ¬public)

There are two levels, L1 and L2, with L1 having one for-
mula and L2 having three formulas. The symbol ϕ12, appearing
on the left side of the equal sign, is a specification at level L2

but is a composite proposition at level L1 since it is on the right
side of the equal sign. Φ1 = {ϕ11} and Φ2 = {ϕ12, ϕ22, ϕ32},
Prop(ϕ11) = {ϕ12, ϕ22, ϕ32} ⊆ Φ2 and Prop(ϕ12) ⊆ AP .

Definition 3.2: (Specification hierarchy tree) The specifica-
tion hierarchy tree, denoted as Gh = (Vh, Eh), is a tree where
each node represents a specification within the H-LTLf , and an
edge (u, v) indicates that specification u contains specification
v as a composite proposition. Any H-LTLf specifications can
be turned into a specification hierarchy tree.

From a tree perspective, the level k of a specification node
ϕik corresponds to its depth, defined as the number of nodes
along the longest path from the root to that node.

2

Definition 3.3: (Leaf and Non-leaf Specifications) A speci-
fication is termed as a leaf specification if the associated node
in the graph Gh does not have any children; otherwise, it is
referred to as a non-leaf specification.

Let Φleaf denote the set of leaf specifications. Based on
Def. 3.1, leaf specifications consist exclusively of atomic
propositions, while non-leaf specifications consist solely of
composite propositions.

B. Semantics of H-LTLf

Given that H-LTLf includes multiple specifications, we
consider multiple systems, particularly transition systems. At
any given state, a system may be addressing a particular
specification. We associate the state sr of a system T (r) with
a leaf specification ψr ∈ Φleaf. This association establishes a
state-specification pair (sr, ψr), indicating that at state sr, the
system T (r) is engaged in satisfying the leaf specification ψr.

Definition 3.4: (State-Specification Sequence) A state-
specification sequence with a horizon h, represented as
τ , is a timed sequence τ = τ0τ1τ2 . . . τh. Here, τi =
((si1, ψ

i
1), (s

i
2, ψ

i
2), . . . , (s

i
N , ψ

i
N)) is the collective state-

specification pairs of N systems at the i-th timestep, where
sir ∈ Sr, and ψi

r ∈ Φleaf ∪ {ϵ}, with ϵ indicating the system’s
non-involvement in any leaf specification at that time.

Given the state-specification sequence τ and a leaf spec-
ification ϕ, we generate a word as σ = σ0, σ1, . . . , σn,
where σi =

{
Lr(s

i
r) | (sir, ψi

r) ∈ τi and ψi
r = ϕ

}
, represents

the collective observations generated by the systems engaging
in the leaf specification ϕ at instant i. Furthermore, given
a leaf (non-leaf) specification ϕ and an input word σ =
σ0, σ1, . . . , σn with σi ⊆ Prop(ϕ), consisting of its atomic
(composite) propositions, we construct an output word of ϕ,
denoted by σ′ = σ′

0, σ
′
1, . . . , σ

′
n, where σ′

i is either ∅ or {ϕ},
tracking the satisfaction of ϕ. Let σi,j = σi, . . . , σj denote the
segment of the input word between indices i and j.

Definition 3.5: (Output word) Given a specification ϕ and
an input word σ = σ0, σ1, . . . , σn with σi ⊆ Prop(ϕ), the
output word σ′ = σ′

0, σ
′
1, . . . , σ

′
n of ϕ is defined as:

• By default, σ′
−1 = {ϕ}.

• σ′
j = {ϕ} if σi+1,j , i + 1 |= ϕ, where i (with i < j) is

the most recent instant when ϕ was satisfied, i.e., i =
max{k |σ′

k = {ϕ}, k = −1, 0, . . . , j − 1}.

The satisfaction relation |= follows the same definition as
introduced in Section II, treating composite propositions as
atomic propositions for non-leaf specifications. The progress
of ϕ resets after it is satisfied at instant i, and it is consid-
ered satisfied again at instant j if the input word segment
σi+1,j satisfies ϕ. In the context of robots, this implies that
the duration of task ϕ extends from i + 1 to j, with the
completion time at instant j. The task’s completion status is
not persistent, meaning that once completed, it must start from
scratch if repeated. The output words of specifications at level
Lk+1 serve as the input words and produce output words of
specifications at level Lk. Thus, starting from the words of leaf
specifications generated by the state-specification sequence τ

t : 0 1 2 3 4 5 6 7 8 9

obsv: {p} {d10} {p} {carry} {d7} {p} {d5}

ϕ1
2 : {ϕ1

2}

ϕ2
2 : {ϕ2

2}

ϕ3
2 : {ϕ3

2}

ϕ1
1 : {ϕ1

1}

Fig. 2: Each row illustrates either the observation or the output
word of a specification. The filled nodes indicate scenarios
where an atomic or composite proposition is satisfied. The
observations (obsv) generate the input word for leaf spec-
ifications ϕ12 ∼ ϕ32, while the combination of output words
for specifications ϕ12 ∼ ϕ32 serve as the input word for
the non-leaf specification ϕ11. The dashed arrows illustrate
the correspondence between specific inputs that lead to the
satisfaction of a given specification.

and proceeding in a bottom-up manner, we ultimately obtain
an output word of the root specification ϕ11. The whole H-
LTLf is satisfied by a state-specification sequence τ if the
output word of ϕ11 contains ϕ11. Algorithmically, a post-order
traversal can be used to traverse the specification hierarchy
tree to compute the output word of ϕ11.

Definition 3.6: (Semantics) Given H-LTLf specifications Φ
and a state-specification sequence τ , the sequence τ satisfies
Φ if the root specification ϕ11 appears in the output word of
ϕ11.

Example 1: continued (Semantics) The output words for
the specifications in (3) are illustrated in Fig. 2. □

IV. PROBLEM FORMULATION

Given a state-specification sequence τ = τ0τ1 . . . τh where
τi = ((si1, ψ

i
1), (s

i
2, ψ

i
2), . . . , (s

i
N , ψ

i
N)), the cost for robot r,

such as energy consumption or completion time, is represented
as cr =

∑h−1
i=0 cr(s

i
r, s

i+1
r), where cr(s

i
r, s

i+1
r) denotes the

cost incurred transitioning between states for robot r. The goal
is to minimize the additive cost, expressed as

J(τ) =

N∑
r=1

cr (4)

Finally, the problem can be formulated as follow:
Problem 1: Given transition systems for N robots and the

H-LTLf specifications Φ, find an optimal state-specification
sequence τ∗ that satisfies Φ and minimizes J(τ∗).

We propose a search-based planning algorithm that enables
simultaneous task allocation and action planning. The core
idea is to approximate the global search space as a collection
of loosely connected subspaces, where each subspace corre-
sponds to an individual LTLf formula within the H-LTLf .
The planner conducts most of the search locally within a
single subspace, transitioning to neighboring subspaces only
when certain conditions—derived from the structure of the
decomposed automata—are met. Due to space constraints, we
omit technical details.

3

scenario lstd lhier Astd Ahier tstd thier cstd chier

1 18 19 (17, 39) (12, 13) 14.1±3.7 4.9±2.3 71.0±6.3 69.0±5.7
2 24 35 (56, 326) (20, 31) 39.6±2.5 7.0±3.1 90.4±4.0 88.6±7.0
3 35 52 (180, 1749) (30, 49) timeout 14.5±4.1 — 97.1±5.9
1 ∧ 2 43 57 (868, 12654) (36, 49) timeout 16.4±7.1 — 148.8±8.4
1 ∧ 3 54 74 (2555, 69858) (46, 67) timeout 47.9±22.3 — 166.4±8.0
2 ∧ 3 60 90 (6056, 325745) (54, 85) timeout 42.5±16.9 — 175.4±6.9
1 ∧ 2 ∧ 3 79 111 — (70, 112) timeout 89.6±28.1 — 246.6±8.3
(1 ∨ 2) ∧ 3 79 110 — (66, 98) timeout 71.5±17.6 — 213.1±23.4
1 ∨ 2 ∨ 3 79 109 — (64, 94) timeout 63.4±20.9 — 163.9±40.5

TABLE I: The comparative analysis focuses on two different types of LTLf specifications. We denote the lengths of the
standard and H-LTLf specifications as lstd and lhier, respectively. The sizes of the corresponding NFAs are represented by Astd
and Ahier, which detail the number of nodes and edges, with the node count listed first. In terms of solutions, the runtimes
for the standard and H-LTLf specifications are indicated by tstd and thier, respectively. Additionally, the plan horizons, or the
lengths of the solutions, for the standard and hierarchical specifications are denoted by cstd and chier, respectively.

V. SIMULATION EXPERIMENTS

A. Scenarios

1) Scenario 2: Transport the paper bin from desk d5 to area
g for emptying, avoiding the public area while it is full. Return
an empty bin from g to desk d5. The atomic propositions are:
default: the robot is not carrying any object, carrybin: the robot
is carrying a full paper bin, dispose: the robot is disposing of
garbage, emptybin: the robot is carrying an empty paper bin,
and public: the robot is located in a public area.

L1 : ϕ1
1 = ♢ϕ1

2 ∧ ♢ϕ2
2

L2 : ϕ1
2 = ♢(d5 ∧ default ∧⃝((carrybin U dispose) ∧ ♢default))

∧ □(carrybin ⇒ ¬public)
ϕ2
2 = ♢(g ∧⃝(g ∧ emptybin) ∧ ♢(d5 ∧⃝(d5 ∧ default)))

2) Scenario 3: Take a photo in meeting rooms m1, m4,
and m6. The camera should be turned off for privacy reasons
when not in meeting rooms. Deliver a document from desk
d5 to d3, ensuring it does not pass through any public areas,
as the document is internal and confidential. Guide a person
waiting at desk d11 to meeting room m6. Let guide, photo,
and camera denote the actions of the robot guiding a person,
capturing a photo, and activating the camera, respectively.

L1 : ϕ1
1 = ♢ϕ1

2 ∧ ♢ϕ2
2 ∧ ♢ϕ3

2

L2 : ϕ1
2 = ♢ϕ1

3 ∧ ♢ϕ2
3 ∧ ♢ϕ3

3

ϕ2
2 = ♢(d5 ∧ carry U (d3 ∧⃝¬carry)) ∧ notpublic

ϕ3
2 = ♢(d11 ∧ guide U (m6 ∧⃝¬guide))

L3 : ϕ1
3 = ♢(m1 ∧ photo) ∧ □(¬meeting ⇒ ¬camera)

ϕ2
3 = ♢(m4 ∧ photo) ∧ □(¬meeting ⇒ ¬camera)

ϕ3
3 = ♢(m6 ∧ photo) ∧ □(¬meeting ⇒ ¬camera)

meeting := m1 ∨m2 ∨m3 ∨m4 ∨m5 ∨m6

3) Combinations of scenarios 1, 2 and 3: We examine
combinations of any two of these tasks as well as the com-
bination of all three. Due to space constraints, we only detail
the scenario involving the final occurrence of all three tasks.

L1 : ϕ1
1 = ♢ϕ1

2 ∧ ♢ϕ2
2 ∧ ♢ϕ3

2

L2 : ϕ1
2 = ♢ϕ1

3 ∧ ♢ϕ2
3 (scenario 2)

ϕ2
2 = ♢ϕ3

3 ∧ ♢ϕ4
3 ∧ ♢ϕ5

3 (scenario 1)

ϕ3
2 = ♢ϕ6

3 ∧ ♢ϕ7
3 ∧ ♢ϕ8

3 (scenario 3)

L3 : ϕ1
3 = ♢(d5 ∧ default ∧⃝((carrybin U dispose) ∧ ♢default))

∧□(carrybin ⇒ ¬public)
ϕ2
3 = ♢(g ∧⃝(g ∧ emptybin) ∧ ♢(d5 ∧⃝(d5 ∧ default)))

ϕ3
3 = ♢(p ∧ carry U (d10 ∧⃝¬carry)) ∧ notpublic (5)

ϕ4
3 = ♢(p ∧ carry U (d7 ∧⃝¬carry)) ∧ notpublic

ϕ5
3 = ♢(p ∧ carry U (d5 ∧⃝¬carry)) ∧ notpublic

ϕ6
3 = ♢ϕ1

4 ∧ ♢ϕ2
4 ∧ ♢ϕ3

4

ϕ7
3 = ♢(d5 ∧ carry U (d3 ∧⃝¬carry)) ∧ notpublic

ϕ8
3 = ♢(d11 ∧ guide U (m6 ∧⃝¬guide))

L4 : ϕ1
4 = ♢(m1 ∧ photo) ∧ □(¬meeting ⇒ ¬camera)

ϕ2
4 = ♢(m4 ∧ photo) ∧ □(¬meeting ⇒ ¬camera)

ϕ3
4 = ♢(m6 ∧ photo) ∧ □(¬meeting ⇒ ¬camera)

If the objective is to accomplish either scenario, this can
be indicated by replacing the formula at level L1 with
ϕ11 = ♢(ϕ12 ∨ ϕ22 ∨ ϕ32). Furthermore, the expression ϕ11 =
♢(ϕ12 ∨ ϕ22) ∧ ♢ϕ32 specifies that either task 1 or task 2 must
be completed, in addition to task 3.

B. Comparison with Existing Works
We use m = 6 robots and compare our method with the

approach in [7]. Robot locations in each scenario are randomly
assigned within the free space. The performance, in terms of
average runtimes and costs over 20 runs, is detailed in Tab. I
and includes the length of formulas and sizes of automata.
The length of a formula is the total number of logical and
temporal operators. Upon reviewing the results, [7]’s method
failed to generate solutions for the last seven tasks within
the one-hour limit. For tasks 1 and 2, our method produced
solutions more quickly and with comparable costs. The fail-
ure of [7]’s approach is attributed to the excessively large
automata it generates, sometimes with hundreds of thousands
of edges, e.g., 325745 edges for scenario 2 ∧ 3, making the
computation of the decomposition set time-consuming as it
requires iterating over all possible runs. For the most complex
scenario, such as 1 ∧ 2 ∧ 3, generating an automaton within
one hour is impossible. In contrast, our method was able to
find a solution in around 90 seconds. Moreover, considering
the last three tasks, which require completing all, two, or only
one task, both the runtime and cost decrease as the number of
required tasks is reduced.

4

REFERENCES

[1] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John
Fitzgerald. Formal methods: Practice and experience. ACM
computing surveys (CSUR), 41(4):1–36, 2009.

[2] Vince Kurtz and Hai Lin. Temporal logic motion planning
with convex optimization via graphs of convex sets. IEEE
Transactions on Robotics, 2023.

[3] Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and
Noah D Goodman. How to grow a mind: Statistics, structure,
and abstraction. Science, 331(6022):1279–1285, 2011.

[4] Charles Kemp, Andrew Perfors, and Joshua B Tenenbaum.
Learning overhypotheses with hierarchical bayesian models.
Developmental Science, 10(3):307–321, 2007.

[5] Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal
logic and linear dynamic logic on finite traces. In Twenty-Third
International Joint Conference on Artificial Intelligence, 2013.

[6] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT press Cambridge, 2008.

[7] Philipp Schillinger, Mathias Bürger, and Dimos V Dimarogonas.
Simultaneous task allocation and planning for temporal logic
goals in heterogeneous multi-robot systems. The International
Journal of Robotics Research, 37(7):818–838, 2018.

5

	Introduction
	Preliminaries
	Hierarchical blackLTLf
	Syntax of blackH-LTLf
	Semantics of blackH-LTLf

	Problem Formulation
	Simulation Experiments
	Scenarios
	Scenario 2
	Scenario 3
	Combinations of scenarios 1, 2 and 3

	Comparison with Existing Works

