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Abstract— We present a soft contact model to simulate
diverse soft terrains, enabling robust legged locomotion through
reinforcement learning. The model extends a standard spring-
damper formulation with Stribeck-Coulomb friction and intro-
duces randomized parameters, such as stiffness, damping, and
friction coefficients, to capture the variability of real-world soft
surfaces, including soil and mattresses. By replacing the default
contact model in the simulator with our formulation, we train
a locomotion policy using an existing learning framework. The
resulting policy demonstrates stable walking on both flat and
inclined soft terrains with the Unitree Go1 robot in simulation.
Notably, it generalizes to rigid ground without explicit training,
highlighting improved robustness across contact conditions.
This work offers a lightweight and flexible alternative to high-
fidelity contact modeling for scalable locomotion training.

I. INTRODUCTION

Legged robots are increasingly envisioned to operate in
human-centric environments such as homes, where they must
traverse not only rigid floors but also soft and deformable
surfaces, including couches and cushions. However, most
reinforcement learning-based locomotion controllers to date
have been developed and tested on hard, rigid ground. As a
result, policies trained on standard rigid terrains often suffer
degraded performance when faced with soft or deformable
substrates [1]. Bridging this gap is crucial, since a substantial
portion of real-world surfaces—from sand and soil outdoors
to carpeting indoors—are non-rigid and yield underfoot,
causing foot sinking and altered frictional forces that can
destabilize controllers tuned for rigid ground [2]. Robust
locomotion over soft terrain is thus an essential capability
for legged robots in many applications, yet it remains an
open challenge.

The difficulty stems from the complex and unpredictable
dynamics of deformable contact. Soft ground can signifi-
cantly deform, dissipate energy, and slip, in ways difficult
to capture with conventional rigid-body models. Terrain
properties such as compliance, damping, and friction may
vary widely and can change with environmental conditions.
Even advanced perception systems cannot reliably infer
these hidden properties of the terrain from vision alone [3],
meaning a robot often will not know how soft a surface
is until it steps on it. While high-fidelity physics models
for soft materials exist, they are computationally intensive.
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Accurate simulation of a robot walking on soft surfaces
might require modeling millions or even billions of material
particles, which is impractical for fast simulation [4]. This
makes brute-force simulation of deformable terrain infeasible
in standard reinforcement learning training loops. As a result,
prior research has often resorted to simplifying assumptions
or avoided soft ground altogether, yielding controllers that
work well on rigid terrain but generalize poorly to de-
formable surfaces.

To address the challenges of locomotion on soft and
varying terrains, two primary strategies have been explored:
model-based and learning-based approaches. Model-based
methods incorporate explicit knowledge of terrain properties
or estimate ground reaction forces using physical models [5]–
[7]. While effective in controlled settings, these methods
often require prior knowledge and manual tuning, limiting
their applicability in unstructured environments.

Learning-based methods, particularly reinforcement learn-
ing, have shown promise in training robust locomotion poli-
cies in simulation [8]–[13]. Notably, Lee et al. demonstrated
that a reinforcement learning policy trained only on rough
rigid terrain was able to zero-shot generalize to deformable
terrains like mud and snow, retaining robustness even without
direct exposure during training [9]. A key enabler of such
generalization is domain randomization, wherein physical
parameters, such as friction coefficients and ground pertur-
bations, are randomized during training to expose the policy
to a wide range of dynamics [14]. However, its effectiveness
diminishes when real-world conditions fall outside the ran-
domized training domain, especially on highly deformable
surfaces with qualitatively different contact dynamics. To
bridge this gap, recent work has augmented simulators with
deformable terrain models. For instance, Choi et al. [3]
introduced a granular media simulation adjustable from soft
sand to firm ground, coupled with an adaptive policy using
foot sensor feedback. This approach enabled a quadruped
robot to run at 3.03 m/s on sand and trot across an air
mattress.

Building on these insights, this article proposes a
lightweight simulation to achieve robust quadruped loco-
motion over diverse soft terrains. Instead of relying on
expensive high-dimensional models of soil or foam, we ex-
tend a standard spring-damper contact model with Stribeck-
Coulomb friction to approximate the behavior of compliant,
dissipative surfaces. This soft contact model is implemented
in the RaiSim simulator [15], which supports fast rigid-
body simulation. By adjusting a small number of contact
parameters, such as the contact stiffness, damping, or friction
coefficients, we can emulate a spectrum of ground hardness



from soft, asking terrain to effectively rigid flooring. We
leverage randomization over these contact parameters during
reinforcement learning training to expose the policy to many
virtual terrains. Through this approach, the robot learns to
dynamically adjust its locomotion strategy as if feeling out
each step, without any explicit terrain estimator.

In our experiments, a quadruped robot trained with our
proposed method walks stably across soft terrains in RaiSim,
while retaining high performance on rigid ground. These
contributions take a step toward natural, reliable legged loco-
motion in human environments, enabling quadruped robots
to traverse the same soft terrains humans do.

II. METHODS
A. Soft Contact Model

Fig. 1. Visualization of the contact forces generated by the proposed soft
contact model. Green arrows indicate the computed contact forces applied
to each foot, while the blue arrow represents the commanded body velocity.

To simulate diverse soft terrains with varying mechanical
properties, we developed a soft contact model that captures
the behavior of deformable surfaces such as foam and
mattresses. The model is designed to support reinforcement
learning in simulation by providing physically consistent and
realistic contact interactions. We compute the contact force
for each foot based on its penetration into the terrain along
the surface normal, with contact forces comprising two main
components: a nonlinear spring-damper model in the normal
direction and a Stribeck-Coulomb friction model in the tan-
gential direction. An overview of the resulting contact forces
during locomotion is illustrated in Fig. 1, where force vectors
vary in direction and magnitude depending on the phase of
foot contact and terrain response. Unlike the previous model
tailored for granular media [3], which assumes no ground
reaction force during the upward movement of the foot due to
the yielding behavior of loosely packed particles, our model
continuously applies contact forces throughout all phases of
penetration. This reflects the physical characteristics of com-
pliant continuous surfaces, which generate reaction forces
even as the foot moves upward, allowing the policy to learn
behaviors consistent with real-world soft terrain.

The normal contact force is defined as:

Fn =
(
ksoft(d) d− csoft(vn) vn

)
n (1)

where d is the penetration depth, n is the unit normal
vector of the contact surface, vn = ∥vn∥ is the magnitude

of the velocity along the normal direction, ksoft is the
depth-dependent stiffness, and csoft is a velocity-dependent
damping coefficient. The stiffness increases nonlinearly with
penetration depth, mimicking the progressive resistance of
soft materials:

ksoft(d) = kmin + (kmax − kmin)

(
min(d, lt)

lt

)1.2

(2)

Here, kmin and kmax are sampled per environment, with kmax

ranging from 1.5 to 2.5 times kmin, to reflect the variability
of soft terrains. lt is the transition length that limits the
growth of stiffness at large penetrations. This formulation
is inspired by nonlinear contact mechanics models in which
contact stiffness increases with deformation [16], [17], and
has been effectively applied to robotic systems [18], [19].

To reflect asymmetric damping behavior during foot con-
tact, csoft is defined as:

csoft(vn) =

{
cdown, if vn < 0 (descending)
cup, if vn ≥ 0 (ascending)

(3)

This asymmetric damping models the observation that
compressive motion into soft terrain (e.g., foot landing) typ-
ically induces greater damping due to material compaction,
internal friction, and energy dissipation, whereas the recovery
phase (e.g., foot lifting) involves less resistance as the
material passively returns to its original shape. Accordingly,
cdown is set to be larger than cup, with cup randomized between
0.2 and 0.8 times cdown across environments.

Tangential force is modeled using a combination of
Stribeck and Coulomb friction, which together capture the
transition from static to kinetic friction. The magnitude of
the tangential friction force is determined as:

∥Ffric∥ = µk∥Fn∥ tanh
(

vt
vCoul

)
+

√
2e(µs − µk)∥Fn∥ exp

(
− ( vt

vSt
)2
)
vt
vSt

(4)

where µk and µs are the kinetic and static friction coeffi-
cients, vt = ∥vt∥ is the magnitude of the tangential velocity,
and vCoul and vSt are velocity thresholds for the Coulomb
and Stribeck transitions, respectively.

The resulting tangential friction force vector is applied in
the direction opposite to the tangential velocity:

Ffric = −∥Ffric∥
vt

∥vt∥
(5)

By stochastically sampling terrain stiffness, damping, and
friction parameters, this model enables training in a wide
range of soft contact conditions, promoting the emergence
of robust locomotion policies.

B. Learning based Controller

Building on the soft terrain simulation environment de-
scribed in Section II-A, we train a learning-based controller
that enables the Unitree Go1 robot to achieve robust and
adaptive locomotion on soft surfaces. The soft contact model,
characterized by nonlinear stiffness, asymmetric damping,
and friction, provides the physical substrate on which the



controller is developed. Rather than using the simulator’s
default contact model, we apply the contact forces computed
from our soft contact model directly as external forces to the
robot’s foot links, ensuring that the learned policy adapts to
the dynamics of the soft terrain.

For policy training, we adopt the learning framework
proposed by Kim et al. [20], which leverages a relaxed loga-
rithmic barrier reward to softly enforce motion styles such as
foot clearance, body height, joint posture, and preferred gait.
The barrier reward is shaped by user-defined lower and upper
bounds, along with δ values that control gradient steepness
in the constraint-violation region. These terms are critical
in guiding the policy toward desirable behaviors without
imposing hard restrictions that might hinder learning in soft
and variable terrain.

TABLE I
BARRIER REWARD FUNCTION.

Constraint Variable dlower dupper δ

Gait fi −0.6 -† 0.05

Foot clearance li[m] −0.05 -† 0.01

Joint position

qroll,i − qnom
roll,i[rad] −π/6 π/6

0.02qhip,i − qnom
hip,i[rad] −π/4 π/4

qknee,i − qnom
knee,i[rad] −2π/5 π/8

Body height bhF [m]
0.35 0.43 0.04

bhH [m]

Target velocity

vcmd
x − vx[m/s]

−0.4 0.4 0.2vcmd
y − vy [m/s]

ωcmd
z − ωz [rad/s]

Base motion

ωx[rad/s]

−0.3 0.3
0.3

ωy [rad/s]

vz [m/s] 0.2

Joint velocity q̇j [rad/s] −8 8 2.0

(·)nom and (·)cmd denote nominal and commanded values, respectively.
(·)i refers to the i-th leg, and (·)j to the j-th joint. x, y, and z are defined
in the body frame. f , l, q, q̇, v, and ω represent gait constraint variable,
foot clearance, joint position, joint velocity, body linear velocity, and body
rotational velocity, respectively. bhF and bhH denote the heights of the
front and hind roll joints from the ground, respectively, in the body frame.
†For fi and li, the upper bounds are unnecessary, thus set to non-reachable
values (2.0 and 1.0, respectively).

The original framework, implemented on the KAIST
HOUND platform [21], is adapted here for the Unitree Go1.
To accommodate the differences in robot morphology and
to enable stable walking on soft terrains, we modify the
constraint boundaries and δ values of the barrier reward.
Table I summarizes the constraint variables, their operational
ranges, and δ values. By integrating soft contact model into
the learning loop and tailoring the reward function accord-
ingly, we achieve a locomotion controller that demonstrates
robust performance on soft terrains.

C. Training in Simulation

The policy is trained entirely in simulation with the
Unitree Go1 quadruped robot. Given that our ultimate goal is
to deploy the policy on real hardware, we explicitly consider
the Go1 robot’s control latency. In real-world experiments,
we observed a 10–20 ms latency between action computation
and execution. To account for this in simulation, we inject

a randomized delay, sampled uniformly from this range,
before applying actions. This latency modeling ensures that
the learned policy is robust to timing discrepancies that may
arise during deployment.

In addition, to mitigate the dynamics mismatch introduced
by such delays, we augment the observation with short-term
histories of critical features. Specifically, we include 10 ms,
20 ms, 30 ms, and 40 ms past values of joint position errors,
joint velocities, and relative foot positions in the body frame.
These are added on top of the original long-term history
inputs at 60 ms, 120 ms, and 180 ms used in the baseline
learning framework [20].

Terrain variation is introduced via a randomized slope
curriculum, where the robot is trained on inclines sampled
uniformly from 0 % to 51 %. Our soft contact model is com-
patible with these inclined surfaces, as the surface normal and
penetration computations are adapted to local slope angles.
To facilitate early learning, particularly during gait discovery,
we begin training with the simulator’s default hard contact
model. From 4000 to 7000 training iterations, we gradually
increase the ratio of soft contact environments, smoothly
transitioning from hard to soft terrain. This progressive
switch allows the policy to stably adapt to the compliant
dynamics of soft terrain while retaining the locomotion skills
acquired during early training.

By integrating latency modeling, observation enhance-
ments, and a soft-terrain-aware curriculum, our training
process yields a locomotion policy that is not only robust
in simulation but also designed with real-world deployment
in mind.

III. RESULTS

Training and Deployment Setup We utilized the RaiSim
simulator for training [15]. The training was conducted on
an AMD Ryzen Threadripper PRO 5995WX and a single
NVIDIA GeForce RTX 3080 Ti for 20 hours, over 20,000
iterations. During the learning process, 400 environments
collected data at 100 Hz in 4-second episodes, resulting in a
batch size of 160,000. To ensure stability in contact dynamics
with the soft terrain model, the simulation time step was
set to 5000 Hz. The control policy was deployed on the
quadruped robot Unitree Go1.

A. Performance on Variable Soft Terrains

To quantitatively assess the robustness of the learned
locomotion policy, we evaluate its performance across a
range of soft terrain configurations characterized by different
stiffness (kmin) and damping (cdown) parameters. Fig. 2 shows
a 3D surface plot of the velocity tracking error norm over
the evaluated parameter space.

The results indicate that the learned policy achieves con-
sistently low velocity tracking errors across a wide range of
soft terrain conditions. This demonstrates the policy’s ability
to adapt to varying ground properties without explicit knowl-
edge of the terrain type. Performance degradation is primarily
observed when stiffness is low, but damping is excessively
high. In such cases, the foot-ground interaction becomes



Fig. 2. The 3D surface represents the average tracking error as a function
of terrain stiffness (kmin) and damping (cdown). The errors are computed
from the norm of vx, vy , and ωz over a 5-second period across 1000
environments where command velocities are uniformly sampled within
the ranges of ±1m/s for vx and vy , and ±1 rad/s for ωz . A horizontal
semi-transparent plane indicates the error norm (0.2259) achieved on rigid
terrain, serving as a reference for comparison. The proximity of the surface
to this baseline across a wide range of terrain parameters highlights the
policy’s robustness and generalization capability under diverse soft contact
conditions.

either unstable or overdamped, resulting in increased tracking
error. Nevertheless, even under these challenging config-
urations, the error remains bounded, indicating a smooth
degradation rather than abrupt failure. These observations
support the conclusion that the proposed training scheme
yields a robust and generalizable locomotion strategy.

IV. CONCLUSION

We proposed a soft contact model for robust quadruped
locomotion over diverse soft terrains by training a policy
with randomized terrain parameters. The model captures
key characteristics of deformable surfaces through nonlinear
stiffness, asymmetric damping, and friction, enabling effi-
cient and physically realistic simulation. The learned policy
achieved stable and accurate velocity tracking, approaching
that of rigid-ground locomotion across a wide range of terrain
conditions, with tracking errors remaining bounded even
in challenging configurations. Future work will focus on
applying the method to real-world deployment and extending
its applicability to structured/unstructured soft environments
such as compliant blocks and articulated surfaces.
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