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Abstract— In this study, we investigate a novel event-
triggered control scheme to enhance driving performance
and safety in autonomous vehicles. Although the propor-
tional–integral–derivative (PID) control algorithm is widely
used for driving control in most commercial vehicles due to
its simplicity and ease of implementation and maintenance,
it suffers from inherent performance and safety limitations.
To overcome these limitations, we propose an event-triggered
control scheme using deep Q-networks (DQNs). In the proposed
approach, a DQN-based auxiliary controller is implemented to
support the PID controller of the autonomous vehicle when
the driving errors increase significantly. An event-triggering
criterion is established to specify the moments when the DQN-
based auxiliary controller intervenes. The DQN is activated
when the lane-keeping error of the PID controller exceeds a
predefined threshold. The effectiveness of the proposed ap-
proach is verified through an autonomous lane-keeping control
task using the Udacity simulator. Simulation results show that
the proposed method enhances both driving performance and
safety. Moreover, the event-triggered control scheme reduces
computational burden.

I. INTRODUCTION

As autonomous driving becomes commercialized, achiev-
ing reliable and adaptive control remains a critical challenge,
especially under unknown dynamic or uncertain driving
conditions [1]. The proportional–integral–derivative (PID)
controller remains widely used in commercial vehicles due
to its simplicity and ease of deployment [2]. However,
because of its simplicity, the PID controller suffers from
fundamental limitations in unknown dynamics and uncertain
environments. PID control, in particular, lacks the adaptabil-
ity needed to handle nonlinearities and sudden changes com-
monly encountered in real-world driving, especially when
facing unexpected situations that were not considered during
the controller tuning phase. Moreover, it cannot appropriately
respond to abnormal conditions.
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To overcome these limitations, reinforcement learning
(RL) has emerged as a promising alternative [3], [4], [5], [6].
RL agents learn control policies through interaction with the
environment, allowing them to handle complex dynamics that
traditional model-based approaches cannot easily capture. In
particular, value-based methods such as Deep Q-Networks
(DQNs) have shown strong performance in discrete control
tasks and have been applied to various applications [7], [8].
However, fully replacing classical controllers with RL in
safety-critical domains remains challenging due to issues
such as training instability, lack of robustness across scenar-
ios, and high computational demand. In particular, the high
computational cost of RL makes real-world implementation
challenging.

On the other hand, event-triggered control has received
increasing attention in recent years as a means to improve
control efficiency by reducing unnecessary computations
and interventions [9], [10], [11], [12], [13]. Unlike time-
triggered approaches, which continuously execute control
actions regardless of system state, event-triggered strategies
activate control updates only when a specified condition is
met—typically when system performance degrades beyond
a predefined threshold. By triggering control updates only
when necessary, this scheme minimizes resource usage and
enables the practical deployment of complex controllers like
DQN within real-time systems. Previous methods have aimed
to conserve network resources by reducing how frequently
essential control inputs are transmitted. However, our method
addresses event-triggered control from a new perspective
to enhance control performance and safety. This topic has
not been sufficiently studied, indicating room for further
investigation. Instead of fully relying on RL, selectively
activating it when needed is a more efficient approach. In
vehicle control, a PID controller can serve as the primary
module for lane keeping under normal conditions, while a
DQN-based auxiliary controller is activated through an event-
triggered mechanism to prevent the vehicle from entering
unsafe states.

In this paper, we propose a novel event-triggered hy-
brid control framework that enhances the performance and
safety of autonomous lane-keeping control. A DQN-based
auxiliary controller is trained to complement the behavior
of a standard PID controller. An event-triggering condition
based on lane deviation error is used to determine when the
DQN should intervene, allowing it to take over control in
complex scenarios where PID performance is insufficient.
Thus, the proposed auxiliary controller is activated when
the lane tracking error exceeds the threshold of the PID



controller, and it functions to reduce the error. The proposed
approach is implemented and validated in the Udacity self-
driving car simulator, demonstrating improved lane-keeping
performance, especially in challenging road segments such
as curves and turns. Through this work, we show that selec-
tive activation of RL-based controllers can enhance system
adaptability without sacrificing the stability and efficiency of
classical control methods.

II. PROPOSED APPROACH

In this section, we present a hybrid control system for
vision-based autonomous driving. First, the driving error in
the image is defined. Then, the proposed control system and
the DQN model employed are described.

A. Vision-based Autonomous Vehicle

To estimate the position of the lane, we employed a deep
learning-based object detection approach using a customized
YOLOv11 model fine-tuned for lane detection [14]. To train
the YOLOv11 model, we constructed a custom dataset by
annotating lane boundaries in frames captured from the
center camera of the Udacity simulator. Roboflow was used
to manage the annotation process and generate training-ready
datasets with appropriate augmentations. For each frame,
the YOLOv11 model detects the bounding boxes of the left
and right lane markings. Rather than using full boundary
coordinates, the center points of these bounding boxes are
extracted and used to approximate the lane center.

Fig. 1. Vison-based lane detection for vehicle control

To compute the lane-following error, we adopted a simpli-
fied form of Image-Based Visual Servoing (IBVS) [15]. The
positional deviation is calculated as the difference between
the detected lane center and a predefined reference point
that represents the ideal lane centerline in image pixel
coordinates. Although this approach does not use the full
geometry of the lane boundaries, it serves as a practical
solution for real-time control and allows the lane-following
system to respond quickly to changes in lane position. These
computed deviations are used as input to both the PID
controller and the DQN-based auxiliary controller. Fig. 1
presents lane detection results along with the corresponding
error computation. The black and blue boxes indicate the
detected lanes. The black dashed line represents the reference
lane position in the image, while the blue dashed line denotes
the current lane position in the image.

B. Event-Triggered Control with Deep Q-Network

The proposed lane tracking error model can be expressed
as follows:

x(t +1) = A(t)x(t)+B(t)(u0(t)+ρ(e(t))ur(t)), (1)

where x(t) is the state of the error system. u0(t) is the PID
control input, and ur(t) is the control input of DQN. A(t) and
B(t) are time-varying matrices that represent vehicle lateral
dynamics. ρ(e(t)) is the triggering function and is defined
as follows:

ρ(e(t)) =
{

1 if e(t)T Pe(t)≥ T
0 if e(t)T Pe(t)< T, (2)

where T is a predefined threshold and P is a weighting
constant.

As shown in Fig. 2, when the weighted error is larger than
a predefined criterion, the DQN controller is used alongside
the PID controller; otherwise, only the PID controller is used.
Namely, in safe driving situations, only the PID controller
is employed; otherwise, in unsafe situations, the DQN con-
troller is used alongside the PID controller.

Fig. 2. Proposed event-triggered control scheme (e(t): control error, u0(t):
PID control input, ur(t): DQN controller input, P: weighting constant, T :
predefined threshold)

C. Deep Q-Network for enhancing Autonomous driving

To complement the baseline PID controller in complex
driving scenarios such as sharp curves or rapid lateral devi-
ations, we employ a DQN as an auxiliary controller. DQN
is a value-based reinforcement learning algorithm that com-
bines Q-learning with deep neural networks to approximate
optimal action-value functions. In each time step, the agent
selects an action based on the current state and updates the Q-
values using the Bellman equation to maximize cumulative
future rewards. Our DQN is trained to generate corrective
steering actions that improve tracking accuracy when the
lane-following error exceeds a predefined threshold. This
setup allows the control system to retain the reliability and
simplicity of PID in most situations, while leveraging the
adaptability of reinforcement learning when needed.

The DQN observes a compact state vector consisting of
the lateral lane deviation ex(t), longitudinal lane deviation
ey(t), and the previous final hybrid steering command—that
is, the sum of the PID controller’s output and the previous
DQN correction. The action space is discretized into nine
steering correction levels, each representing a fixed incre-
mental adjustment to the current PID output.



Fig. 3. Deep Q-Network for Event-triggered control for vision-based
autonomous vehicles

The Q-network is implemented as a fully connected feed-
forward neural network with two hidden layers of 16 neurons
each, using ReLU activation functions. The network takes
the 3-dimensional state as input and outputs Q-values for
the 9 discrete actions. To ensure stable learning, we use a
target network along with an experience replay buffer that
stores up to 10000 transitions. During training, mini-batches
of 64 randomly sampled transitions are used to update the
Q-network. This helps reduce temporal correlation among
samples and improves training robustness. An ε-greedy ex-
ploration strategy is applied, where ε decays exponentially
from 1.0 to 0.05 over 1000 steps. This decay schedule allows
sufficient early-stage exploration while gradually shifting
toward exploitation as the agent gains more experience.
The Q-network is trained online during simulation using
the Adam optimizer with a learning rate of 0.001. Figure
3 depicts the Deep Q-Network used in the simulation.

One of the key contributions of our control design is the
formulation of a novel reward function for training the DQN
agent in autonomous driving. The reward at each time step is
designed to penalize large tracking errors, sudden changes in
steering, and excessive deviation beyond a predefined safety
threshold. Formally, the reward Rt is defined as:

R(t) =−|ex(t)|−α · |δ (t)−δ (t −1)|−β ·max(0, |ex(t)|− γ)
(3)

where ex(t) denotes the lateral lane deviation, and δt repre-
sents the final hybrid steering command resulting from the
combination of the PID output and the DQN correction at
time step t. The first term penalizes raw lane deviation. The
second term, weighted by α , penalizes abrupt changes in
steering to promote smooth control. The third term, weighted

by β , applies an additional penalty only when the devia-
tion exceeds a predefined threshold γ , encouraging strong
correction only when necessary. This reward formulation
balances accuracy and smoothness under normal conditions
while enabling aggressive adjustments in critical scenarios.

When the lane deviation remains below the defined thresh-
old, the PID controller operates independently. Once the
deviation surpasses this threshold, the DQN is activated and
its output is added to the PID control signal, forming a
combined steering command. This integration ensures that
the DQN contributes only when necessary, minimizing com-
putational overhead while enhancing control performance in
challenging situations.

III. EXPERIMENTAL RESULTS

A. Simulation Environment

All experiments were conducted in the Udacity self-
driving car simulator, a popular open-source platform for
prototyping autonomous driving algorithms in a controlled
yet visually realistic environment. The simulator features
a variety of road types, including bridges, lane-marked
roads, and unmarked segments, as well as diverse curvature
and road width conditions, allowing for a comprehensive
assessment of control performance. The virtual vehicle is
equipped with three front-facing RGB cameras—left, center,
and right—mounted on the front bumper. However, only the
center camera was utilized for both training and deploy-
ment of the control algorithm. Images were captured at a
resolution of 320×160 pixels at an approximate frame rate
of 25 frames per second. The control loop operated at 10
Hz to emulate real-time driving conditions. Experimental
evaluation focused on two major types of road segments:
straight lanes and sharp curves. The latter were used to
assess the hybrid controller’s adaptability in complex and
nonlinear driving scenarios. All experiments were conducted
on a consistent track under fixed environmental conditions
to ensure fair comparison across different control schemes.

B. Autonomous Driving Simulation

The effectiveness of the proposed method is evaluated
through a comparison with a baseline that employs only
conventional PID control.

Fig. 4. Comparison of lane tracking errors



Fig. 4 presents a comparison between the lane tracking
errors of the PID controller and the proposed method. The
red solid line represents the error associated with the PID
controller, whereas the black solid line corresponds to the
proposed controller. After time step 1100, the vehicle enters a
sharp turning section. While the proposed method continues
to reduce control errors in a stable manner, the PID controller
causes the vehicle to deviate from the road and come to a stop
near time step 1300. These results indicate that the proposed
controller provides auxiliary inputs to the PID controller,
thereby improving the overall safety of the driving system.

Fig. 5. Control Input (Proposed controller=PID controller+DQN controller)

Fig. 6. Trigger signal in the simulation

Figs. 5 and 6 show the control input and the event-
triggering signal, respectively. In Fig. 5, the proposed con-
troller represents the combined control input of the PID
controller and the DQN controller. As shown in Figs. 5 and
6, the DQN controller generates control inputs only when a
trigger signal is activated. This confirms that the proposed
approach significantly reduces computational complexity.
Consequently, the DQN controller contributes to enhanced
safety and demonstrates its practical efficiency.

IV. CONCLUSIONS
In this study, we presented an event-triggered hybrid

control framework that combines a PID controller with a
DQN to enhance lane-keeping safety in autonomous driving.
The DQN was selectively activated based on a lane devia-
tion threshold, while a custom reward function encouraged
smooth and accurate control. This approach reduced unnec-
essary computations and demonstrated improved stability and

adaptability over the baseline PID controller in simulation
experiments.

To further improve the proposed framework, we plan
to explore Proximal Policy Optimization (PPO) as an al-
ternative to DQN [16]. Although PPO typically requires
longer training times, it offers notable advantages, including
improved training stability via a clipped surrogate objective
and the ability to handle continuous action spaces. These
properties have the potential to enable more precise and
adaptive steering in future implementations.

In addition, while a simplified form of IBVS was adopted
in this work, future work will focus on utilizing full geomet-
ric information by incorporating all four corner points of the
detected lane boundaries. This improvement will enable more
accurate estimation of lane deviation, potentially leading to
further gains in control precision and robustness.

Finally, we will analyze the stability of the proposed DQN-
based event-triggered control system using the Lyapunov
stability method.
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