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Abstract— Ensuring constraint satisfaction is a key require-
ment for safety-critical systems, which include most robotic
platforms. For example, constraints can be used for modeling
joint position/velocity/torque limits, collision avoidance and
to specify desired behaviors during operations. Constrained
systems are often controlled using Model Predictive Control,
because of its ability to naturally handle constraints, rely-
ing on numerical optimization. However, ensuring constraint
satisfaction is challenging for nonlinear systems/constraints.
A well-known tool to make controllers safe is the so-called
safe set (a.k.a. control-invariant set). Unfortunately, for most
nonlinear systems, as robot manipulators, safe sets cannot
be exactly computed, but can only be approximated with
numerical methods. This extended abstract presents two novel
Model Predictive Control schemes that can guarantee safety
under weaker requirements on the safe set. These methods
replace the classic terminal constraint with novel receding
constraints, leading to a higher number of completed tasks,
while retaining safety guarantees. From a theoretical point of
view these controllers are superior, in the sense that the safe
set has to satisfy less strict conditions to ensure Recursive
Feasibility. Moreover, they can rely on a safe task-abortion
strategy to drive the system to an equilibrium state when a risk
of constraint violation is detected. We evaluated our approaches
on a simulated robot manipulator, empirically demonstrating
their superiority to state-of-the-art MPC schemes.

I. INTRODUCTION

Guaranteeing safety is a fundamental requirement in al-
most all robotics applications. Safety is typically formulated
via a set of equality/inequality constraints that the system
should satisfy at all times. For instance, such constraints
can model joint limits, actuation bounds, collision avoidance,
or even more abstract and intangible requirements that are
difficult to describe using the traditional model-based state
space. These kinds of constraints can be employed in a large
variety of tasks that are difficult to formulate analytically, and
can rely on uncertain safety specifications, such as natural
language, semantic concepts, and high-dimensional sensor
data (e.g., images).

Regardless of the type of constraint, ensuring persistent
satisfaction is extremely challenging. This is the case for
both recent data-driven approaches, often relying on Rein-
forcement Learning (RL) algorithms, and for model-based
control methods such as Model Predictive Control (MPC).
Indeed, if the system dynamics is nonlinear, MPC methods
in general cannot easily guarantee safety.

The most common approach for guaranteeing safety relies
on the knowledge of a so-called safe set (a.k.a. control-
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invariant set) [1], [2], or, equivalently, a Control Barrier
Function (CBF) [3], [4]. However, computing exact safe
sets for nonlinear systems is generally untractable. Hence,
professionals have relied on numerical methods that can
compute approximations of such sets/functions [5]–[12].
Unfortunately, safety guarantees are compromised if the safe
set is not exact.

We present novel MPC schemes, namely Receding-
Constraint MPC and Parallel-Constraint MPC, that ensure:
i) safety, assuming the safe set is a conservative approxi-
mation of a specific backward reachable set; ii) recursive
feasibility, assuming the safe set is N-step control invariant,
which is a weaker assumption than classic control invariance.
We compared our approaches with classic MPC schemes.
Our methods, tested in simulation on a Z1 manipulator with
4 actuated joints, could successfully avoid constraint viola-
tion in more tests than classic MPC formulations, without
compromising task performance.

Even if the presented frameworks have been only tested
with traditional constraint specifications (i.e., collision avoid-
ance), they can potentially be applied to intangible con-
straints, once such constraints, are used to compute a safe
set, as in [13].

II. BACKGROUND

A. Notation

• N denotes the set of natural numbers;
• {xi}N0 denotes a discrete-time trajectory given by the

sequence (x0, . . . , xN );
• xi|k denotes the state at time step k+ i predicted when

solving the MPC problem at time step k;

B. Problem statement

Let us consider a discrete-time dynamical system with
state and control constraints:

xi+1 = f(xi, ui), x ∈ X , u ∈ U . (1)

Our goal is to design a control algorithm to ensure safety
(i.e., constraint satisfaction), while preserving performance
(i.e., cost minimization) as much as possible. Let us define S
as the set containing all the equilibrium states of our system:

S = {x ∈ X | ∃u ∈ U : x = f(x, u)}. (2)

To ensure safety, we will rely on the M-Step Backward-
Reachable Set [1] of S, which we denote as VM . Mathemat-
ically, it is defined as the subset of X starting from which it



is possible to reach S in M steps:

VM ≜ {x0 ∈ X | ∃{ui}M−1
0 : xM ∈ S, xi ∈ X ,

ui ∈ U ,∀ i = 0, . . . ,M − 1}.
(3)

Being a backward reachable set of equilibrium states, the
set VM is control-invariant [1]. Namely, starting inside VM ,
we can remain inside VM forever. Knowledge of the set VM

would make it easy to design a safe controller. However,
we cannot assume to know VM in general, because its
computation can be extremely complex. We rely instead on
the following, more realistic, assumption.

Assumption 1. We know a conservative approximation of
the set VM :

V̂M ⊆ VM (4)

Note that V̂M need not be control invariant in general.

As discussed above, different methods exist to compute
numerical approximations of VM . We have chosen to use a
slightly modified version of the Viability-Boundary Optimal
Control (VBOC) method [12]. The resulting approximation
of VM can be easily made conservative by introducing a user-
defined safety margin to ”shrink” the set. Now we discuss
different approaches to exploit V̂M in an MPC formulation
to try to achieve safety.

C. Model Predictive Control and Recursive Feasibility

Let us consider the following MPC problem:

minimize
{xi}N

0 ,{ui}N−1
0

N−1∑
i=0

ℓi(xi, ui) + ℓN (xN ) (5a)

subject to x0 = xinit (5b)
xi+1 = f(xi, ui) i = 0 . . . N − 1 (5c)
xi ∈ X , ui ∈ U i = 0 . . . N − 1 (5d)
xN ∈ XN , (5e)

where ℓ(·)/ℓN (·) is the running/terminal cost, xinit is the
current state, and XN ⊆ X is the terminal set [14].

Even though MPC is one of the most suited frameworks
for controlling constrained systems, ensuring safety (i.e.,
constraint satisfaction) remains challenging when dynamics
and/or constraints are nonlinear. The most common approach
is based on Recursive Feasibility (RF), which guarantees
that, if an MPC problem is feasible at the first loop, it will
remain feasible forever. RF is guaranteed if the terminal set
XN is control-invariant, such as VM . Unfortunately, we do
not know VM , but only V̂M , which is not control invariant in
general. Therefore, using V̂M as terminal set does not ensure
RF: this means that our problem could become unfeasible,
losing safety.

III. SAFE MODEL PREDICTIVE CONTROL

This section describes our novel Safe MPC schemes.
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Fig. 1. Example of Receding-Constraint MPC with N = 4. After the MPC
loop 3, the receding constraint slides forward because x4|3 ∈ V̂M .

A. Safe Task Abortion

Our key idea to ensure safety relies on Assumption 1 and
on the following two assumptions.

Assumption 2. We have access to two computational units,
which we refer to as unit A and unit B.

Assumption 3. We can solve the following Optimal Control
Problem (OCP) for any xinit ∈ V̂M , in L + 1 time steps
(with 0 ≤ L ≤ N − 1):

minimize
{xi}M

0 ,{ui}M−1
0

M−1∑
i=0

ℓi(xi, ui) + ℓM (xM )

subject to (5b), (5c), (5d), xM = xM−1

(6)

Note that the only role of the cost function is to facilitate
convergence.

OCP (6) finds a trajectory reaching an equilibrium state
from xinit. Suppose we trigger the safe abort procedure at
MPC loop k. The procedure consists of these steps:

1) unit A uses the MPC solution computed at loop k− 1
to reach the safe state xL+1|k−1 ∈ V̂M ;

2) in parallel, unit B solves OCP (6), using xL+1|k−1 as
initial state;

3) after reaching xL+1|k−1, we follow the solution of
OCP (6) to reach an equilibrium state.

The hyper-parameter L should be set by the user as small as
possible, while satisfying Assumption 3.

B. Receding Constraint MPC

As discussed in [15], our idea relies on the fact that, as
long as at least one state xj ∈ V̂M (with 1 ≤ j ≤ N ), we
know that x1 ∈ VM because from x1 we can reach xj . Based
on this insight, we suggest to adapt online the time step at
which we constrain the state in V̂M . If at the MPC loop
k − 1 we had xj|k−1 ∈ V̂M , at the loop k we know that it
is possible to have xj−1|k ∈ V̂M . This is sufficient to ensure



safety for j loops, during which this receding constraint
would slide backward along the horizon. However, once the
receding constraint reaches time step 0, it can no longer
ensure safety. Therefore, we suggest to maintain also a soft
constraint for the terminal state to be in V̂M and, after solving
the MPC at loop k − 1, to check whether xN |k−1 ∈ V̂M ; if
that is the case, at loop k we can move the receding constraint
forward on xN−1|k, which ensures safety for other N − 1
loops. An example is depicted in Fig. 1.

This method is better than the classic terminal-constraint
approach because i) it ensures safety (if combined with the
task abortion strategy), and ii) it ensures recursive feasibility
for some MPC loops (i.e. j MPC loops, whenever a predicted
state xj is in V̂M ).

More precisely, in absence of stochastic effects, even at
a theoretical level the Receding-Constraint MPC ensures
recursive feasibility under a weaker assumption on the safe
set than the terminal constraint approach, as outlined below.

Definition A set A ⊆ X is N -step control invariant if,
starting from any state in A, it is possible to come back
to it in exactly N time steps:

∀x0 ∈ A,∃ {ui}N−1
0 :

xN ∈ A, xi ∈ X , ui ∈ U , ∀i = 0, . . . , N − 1
(7)

This is an extension of the well-known control invariance,
with 1-step control invariance being equivalent to classic con-
trol invariance. So, assuming VM is K-step control invariant,
recursive feasibility is ensured if the horizon of the MPC
N is equal to or greater than K, because at worst when
x0|k ∈ VM , it is possible to satisfy xN |k ∈ VM , and the
receding constraint can be moved forward.

C. Parallel-Constraint MPC

Instead of using a single state along the horizon to ensure
safety, we could try to reach the safe set at different time
steps exploiting parallel computation [16]. As long as at
least one state xp ∈ V̂M (with 1 ≤ p ≤ N ), we can
ensure constraint satisfaction because x1 ∈ VM+p−1. This is
because from x1 we can reach xp in p− 1 steps. Ideally, we
would like to include the following constraint in our problem
formulation:

(x1 ∈ V̂M ) ∨ (x2 ∈ V̂M ) ∨ . . . ∨ (xN ∈ V̂M ). (8)

However, this type of constraint (OR constraints) is ex-
tremely hard to deal with for numerical solvers.

If we have access to N computational units, we can solve
N problems in parallel, each constraining the state inside
V̂M at a different time step p ∈ [1, N ]:

minimize
X,U

N−1∑
i=0

ℓi(xi, ui) + ℓN (xN )

subject to (5b), (5c), (5d), xp ∈ V̂M

(9)

Then, we can use the solution of one of the problems that
have been successfully solved. Since our main concern is

Fig. 2. Parallel MPC scheme. At each control step, N different problems
with form (9) are solved in parallel, then the best solution in term of safety
is chosen and applied to the plant.

safety, we decide to use the solution satisfying the safe-
set constraint at the furthest time. A scheme of the Parallel
Constraint MPC is depicted in Fig. 2.

IV. SIMULATION RESULTS

A. Simulation Setup

To thoroughly evaluate the safe abort and the novel
MPC formulations, we compared in simulation six MPC
formulations of increasing complexity1:

• Naive: a classic formulation without terminal constraint,
i.e., problem (5) with XN = X . This is the baseline for
all the experiments.

• Zerovel: a classic formulation that constrains the last
state to be motionless. Basically, it uses the set of
equilibria S as terminal set.

• Soft Terminal (ST): it introduces a soft terminal con-
straint set XN = V̂M , as a first step towards RF.

• Hard Terminal With Abort (HTWA): classical formula-
tion with hard terminal constraint. If the latter is not
satisfied the last solution is shifted and used. It triggers
the safe abort whenever for N−L−1 consecutive times
the terminal constraint is violated.

• Receding: our novel formulation which uses a hard
constraint for xr ∈ V̂M and a soft constraint for xN ∈
V̂M . It triggers the safe abort if the receding constraint
reaches the node L+ 1.

• Parallel: the novel formulation that solves N different
problems simultaneously, in which the safe-set hard
constraint is placed at different nodes and safe abort
works as in the case of Receding.

For the simulations, we have used a 4-joint version of the
Z1 manipulator. Starting from random configurations, the
task is to reach a Cartesian position with the end-effector
in an environment with fixed obstacles. Given x = (q, q̇),
the collision avoidance constraints can be formulated with

1Our open-source code is freely available at https://github.com/
idra-lab/safe-mpc.
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simple distance expressions g(q). The running cost penalizes
deviations from the Cartesian target pref and control efforts:

l(x, u) = ||p(q)− pref||2Q + ||u||2R
Q = 103I3, R = 10−3I4,

(10)

where p(q) is the forward kinematics function to compute the
end-effector position and Ih is the identity matrix with size
h. V̂M was approximated using VBOC [12] and membership
to the set is verified with the constraint:

(1− α)ϕ(x)− ||q̇|| ≥ 0, (11)

where ϕ(·) is a Neural Network (NN) computing an upper
bound on the joint velocity norm [12], and α ∈ [0, 1] is a
user-defined safety factor introduced to ensure that V̂M ⊆
VM .

We have run 300 simulations for each MPC formulation
and each control horizon, starting from the same static
random joint positions q0, with time step dt = 5ms, safety
margin α = 10% and L = 0, assuming the OCP (6) can be
solved in one step. CASADI [17] has been used as symbolic
framework for the dynamics, costs, and constraints, while
ACADOS [18] as OCPs solver and dynamics’ integrator. To
integrate the PyTorch [19] neural model representing the safe
set inside ACADOS, we used L4CASADI [20]. The solver
was used in RTI mode [21], to comply with the real-time
constraints.

B. Constraint Violations

Figure 3 reports the percentage of constraint violations
for each controller and for different horizons, using a safety
margin α = 10%. As expected, Zerovel never failed, since
it is the only controller employing an exact control invariant
set, even if very small, causing a slow reaching of the target.
In terms of safety, Naive and ST failed the most. HTWA
performed better than the latter, thanks to the possibility of
aborting the task when it detects potential failures. How-
ever, for control horizons larger than 25, excluding Zerovel,
Receding and Parallel performed similarly and better than
the others, while for shorter horizons Parallel was the best
controller, failing only 7% of the tasks even with a very short
horizon of 20 steps.

C. Costs

In terms of cost, Fig. 4 shows the average cost increment,
considering only the tasks completed without violations by
all controllers, with respect to the costs of the optimal
solutions obtained solving an OCP with a horizon as long as
the task duration. Zerovel, the safest controller, performed
the worst. Surprisingly, Naive achieved worse results than
the remaining controllers. All the other controllers performed
very similarly, with a natural deterioration of performance for
decreasing horizons.

V. CONCLUSIONS

We have presented two novel MPC formulations.
Receding-Constraint MPC provides recursive feasibility
guarantees under a weaker assumption on the used safe set

Fig. 3. Number of failures (constraint violations) for different lengths of
the MPC horizon.

Fig. 4. Mean cost surplus w.r.t. the optimal costs computed solving a full-
length OCP for each task not failed by any controller, for different lengths
of the MPC horizon.

with respect to classic approaches. Parallel-Constraint MPC
exploits parallel computation to improve safety. We have
also presented a task-abortion strategy that allows to reach
an equilibrium state whenever a risk of constraint violation
is detected. Our results show the improved safety of our
approaches w.r.t. state-of-the-art methods.

While our methods rely on weaker assumptions than
standard approaches, these assumptions are still hard to
verify, which can lead to constraint violations, as shown in
our tests. Inspired by recent work [22], we want to investigate
the use of robust optimization techniques to certify N-Step
Control Invariance.

We also plan to account for uncertainties in the dy-
namics using robust optimization. While this work focused
on model-based control methods, our approach could be
extended in the future to safety filters based on intangible
specification or used to make safe black-box policies as those
obtained from RL.
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