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Abstract— Robotic systems operating in the real-world are
typically required to avoid collisions while exercising appro-
priate levels of caution when approaching or navigating near
different obstacles. To achieve this, we investigate a method
of generating safe sets with gradient behavior customized to
specific regions of a domain. Our method leverages Poisson
safety functions, which enable the generation of safe sets from
perception data. Specifically, we demonstrate how adjusting
the boundary conditions of the guidance field yields tunable
boundary gradients, whose magnitudes capture levels of caution
around obstacle surfaces. We showcase the utility of the method
in simulation, and discuss how it can be integrated with
semantic information to achieve context-aware safety strategies,
such as robustness tailored to specific obstacles.

I. INTRODUCTION

Modern robotic systems increasingly leverage advanced
perception tools, enabling semantic understanding of sur-
rounding objects and obstacles. In autonomous driving for
example, this is particularly important when different objects
represent varying levels of risk or importance (e.g., humans
vs static structures). Leveraging this information for dynamic
navigation requires not only detecting these objects, but also
exercising the appropriate level of caution when navigating
near them.

Given a functional representation of the environment that
characterizes safety, Control Barrier Functions (CBFs) [1],
[2] are a tool used to synthesize safe controllers by enforcing
the forward invariance of a desired safe set. However, in
the context of collision avoidance, traditional methods for
synthesizing safe sets often impose uniform gradients on the
set boundary, treating all obstacles equally, which limits the
ability to tailor safety behavior to specific contexts. Such
uniformity offers limited flexibility in how conservativeness
can be expressed in semantically rich scenarios.

Recently, Possion safety functions [3] have been proposed
to enable real-time generation of safe sets from perception
data by solving a Dirichlet problem for Poisson’s equation.
This approach leverages a guidance field that encodes gra-
dient information required for safety. The guidance field
provides additional flexibility in defining safety by allowing
boundary conditions to specify desired repulsive gradients
(i.e., boundary flux) on obstacle surfaces.

This work presents a method for generating safe sets
with tunable boundary gradients by adjusting the desired
boundary flux in Poisson safety functions. This enables
encoding different levels of desired caution around obstacles.
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Fig. 1. Safe sets synthesis in real-time from perception data via Poisson’s
equation. See video here.

We validate the method in simulation and discuss how it can
be integrated with semantic labeling to enable context-aware
safety strategies such as obstacle-specific robustness.

II. BACKGROUND

Consider the nonlinear control affine system of the form:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn,u ∈ Rm are the state and input, and
f : Rn → Rn,g : Rn → Rn×m are assumed to be locally
Lipschitz continuous functions. Given a locally Lipschitz
continuous controller k : Rn → Rm , the closed-loop system
ẋ = fcl(x) = f(x) + g(x)k(x) yields an ODE such that
for any initial condition x(0) = x0 ∈ Rn, there exists a
unique continuously differentiable solution t 7→ x(t), which
we assume exists for all t ≥ 0 for ease of exposition.

A. Safety and Control Barrier Functions

We define the concept of safety through the notion of
forward invariance, where trajectories t 7→ x(t) must be kept
in a desired safe set for all t ≥ 0. In particular, we consider
safe sets defined as the 0-superlevel set of a continuously
differentiable function hS : Rn → R as:

S =
{
x ∈ Rn

∣∣hS(x) ≥ 0
}
. (2)

Control Barrier Functions (CBFs) are a constructive tool that
can be used to design controllers for (1) that enforce the
forward invariance of the set C.

Definition 1. (Control Barrier Functions [1]) We call a
function hS : Rn → R a Control Barrier Function (CBF)
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for (1) if there exists1 γ ∈ Ke
∞ such that for all x ∈ Rn, the

following condition holds:

sup
u∈Rm

{
∇hS(x)·f(x)︸ ︷︷ ︸

LfhS(x)

+∇hS(x)·g(x)︸ ︷︷ ︸
LghS(x)

u
}
> −γ(hS(x))

(3)

Given a nominal controller knom, and a CBF h, a typical
way of synthesizing safe controllers is through quadratic
programming-based safety filters, which adjust knom to the
nearest safe action:

k(x) = argmin
u∈Rm

∥u− knom(x)∥22 (Safety-Filter)

s.t. LfhS(x) + LghS(x)u ≥ −γ(hS(x)).

Next, we discuss a method of synthesizing CBFs for en-
vironmentally relevant safety specifications, as presented in
[3].

B. Poisson Safety Function

We focus on systems for which safety specifications are
described in spatial coordinates y := y(x) = (x, y, z) ∈ R3.
Given an occupancy map, let Ω be a smooth, open, bounded
and connected set representing unoccupied regions and ∂Ω
represent the surfaces of occupied regions. Specifically,
∂Ω =

⋃no

i ∂Γi where Γi is an open, bounded and connected
set corresponding to the interior of an occupied region with
no denoting the total number of unoccupied regions. A safety
function provides a functional representation of safety for an
environment, defined as follows.

Definition 2. (Safety Function [3]) Let y = (x, y, z) ∈ R3

represent coordinates in three dimensional space. We call a
function h : Ω → R a safety function of order k on Ω if h
is k-times differentiable, Dh(y) ̸= 0 when h(y) = 0 , and
the 0-superlevel set of h characterizes a safe set:

C = {y ∈ Ω : h(y) ≥ 0}, (4a)

∂C = {y ∈ Ω : h(y) = 0}, (4b)

int(C) = {y ∈ Ω : h(y) > 0}. (4c)

Given environmental data characterizing the domain Ω
through an occupancy map, Poisson safety functions [3]
define safe sets satisfying Def. 2 as solutions to the Dirichlet
problem for Poisson’s equation:{

∆h(y) = f(y) in Ω,

h(y) = 0 on ∂Ω,
(5)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian and f : Ω →
R<0 is a given forcing function. As discussed in [4], under
appropriate regularity assumptions on Ω, a smooth forcing
function f ∈ C∞(Ω) yields a smooth solution h ∈ C∞(Ω)
to (5). As demonstrated in [3], this smooth solution, h,
characterizes the safe set C such that Ω = int(C), ∂C = ∂Ω,
and may be used to construct safety filters yielding safe

1A continuous function γ : R → R is an extended class K, Ke
∞, (γ ∈

Ke
∞) if γ is monotonically increasing, γ(0) = 0, lims→∞ γ(s) = ∞,

and lims→−∞ γ(s) = −∞.

control actions for (1) under the appropriate relative degree
assumptions [5]. One way of generating a smooth h is by
constructing a smooth guidance field, which we discuss next.

C. Guidance Field

A guidance field provides a way of designing a forcing
function f that encodes desired gradient information required
for safety [3]. To construct a smooth guidance field, we
consider the vector field v⃗ = (vx, vy, vz) : Ω → R3,
with each component satisfying Laplace’s equation subject
to Dirichlet boundary conditions:{

∆vi(y) = 0 in Ω,

vi(y) = b(y)ni(y) on ∂Ω,
(6)

for i ∈ {x, y, z}, where n̂ = (nx, ny, nz) : ∂Ω → R3

denotes the outward unit normal vector such that v⃗(y) =
b(y)n̂(y) on ∂Ω, and b : ∂Ω → R<0 prescribes the outward
directional derivative encoding the desired boundary flux.
The boundary flux is negative to encode repulsive gradients
on the boundary.

Given a guidance field v⃗ as the solution to (6), one
can verify that using the forcing function f(y) = ∇ · v⃗
in (5) yields a smooth solution h whose gradient, ∇h, is
the least squares approximation of v⃗, with the error in the
boundary flux given as e(y) = ∇h(y) · n̂(y) − b(y) on
∂Ω. Furthermore, to guarantee h satisfies (4a), the following
adjustment2:

f(y) = − 1

β
ln(1 + exp−∇·v⃗(y)β). (7)

ensures that f(y) < 0 for all y ∈ Ω, yielding in h ∈
C∞(Ω;R≥0) with h(y) = 0 only on ∂Ω. The next section
presents our main contribution, highlighting the benefits of
the guidance field in achieving more customized safety.

III. CONTRIBUTION: TUNABLE BOUNDARY GRADIENTS

In this work, we examine the advantages of designing
forcing functions (7) with the guidance field v⃗ satisfying (6).
In particular, we illustrate the provided flexibility in assign-
ing desired gradient behavior on ∂Ω through the boundary
conditions in (6), and its utility to achieve customized safety
in the context of collision avoidance.

A. Obstacle-Specific Gradients

The boundary flux of v⃗, dictated by the function b in
(6), prescribes the desired magnitude of repulsive gradients
∇h along the boundary ∂Ω. Large values of b yield steeper
boundary gradients, while small values of b lead to shallow
gradients. This ability to tune boundary gradients leads to
varying magnitudes of repulsive gradients around obstacle
surfaces, enabling the ability encode obstacle-specific gradi-
ents. In what follows, we demonstrate the yielded benefits of
obstacle-specific gradients in the performance of synthesized
safety filters with the use of a working example.

2Inspired by softplus function.



For ease of exposition, let Ω ⊂ R2 such that v⃗ =
(vx, vy) = bn̂ with n̂ = [nx, ny]

⊤ on ∂Ω, and consider
the single integrator:

ẏ = w (8)

where y = (x, y) ∈ R2 represents 2D spatial coodinates. We
consider the task of stabilizing (8) from an initial condition
y0 ∈ R2 to a goal position yd ∈ R2, while avoiding
collisions with obstacles.

Let h ∈ C∞(Ω) be the solution to (5) with the forcing
function (7), characterizing a safe set C as in (4a). To ensure
the system (8) avoids collisions with the obstacles (as shown
in Fig 2.) and remains within C, we filter a stabilizing
nominal controller knom(y) = −Kp(y − yd) where Kp ∈
R2×2 is a diagonal, positive definite matrix, to the nearest
safe action with the following QP-based controller:

k(y) = argmin
w∈R2

∥w − knom(y)∥22 (9)

s.t. ∇h(y)⊤w ≥ −γh(y) (10)

with γ > 0.
One can verify that small values of values of γ result in

more conservative (i.e., cautious) behaviors near the bound-
ary ∂C = ∂Ω. However, this leads to the same conservative
behavior around all obstacles surfaces on ∂Ω, resulting in
global conservatism. In contrast, we find empirically that
by assigning small values of b to specific obstacle surfaces
on ∂Ω results in local conservative behaviors with respect
to those obstacles. This provides a mechanism for encoding
obstacle-specific gradients. To illustrate this, let Γobs corre-
spond to the interior of the top right obstacle in Fig 2., we
consider the following choices of desired boundary flux b in
the boundary conditions of (6):

b1(y) =

{
2 if y ∈ ∂Γobs

1, else
, (11)

and

b2(y) =

{
0.2 if y ∈ ∂Γobs

1, else
. (12)

Figure 2. demonstrates the resulting trajectories from various
initial positions, where we see (more clearly with the green
trajectory) the effect of the flux values around ∂Γobs.

IV. DISCUSSION AND FUTURE WORK

The ability to assign obstacle-specific gradients offers
several benefits. Among them, it has been shown in [3] to
help yield trajectories that avoid deadlocks (e.g., undesired
equilibria) resulting from synthesized safety filters. Beyond
this, the approach enables the use of semantic labeling—
allowing different levels of caution to be assigned based on
obstacle type. We believe that this work creates a pathway
for semantic-aware safety, where certain obstacles (e.g.,
humans, fragile objects) are treated with higher priority.
More specifically, this provides a pathway for encoding
robustness with respect to specific obstacles, enabling the

Fig. 2. (Top Row) By leveraging b1, we increase the magnitude of the
gradients (i.e., make them steeper) at the boundary of the top right obstacle
and show the resulting trajectories around this obstacle. (Bottom Row) By
leveraging b2, we reduce the magnitude of gradients (make them shallower)
and show the resulting conservative behavior.

ability to incorporate more context in safety objectives.
Future work involves exploring these pathways by integrating
semantic information to achieve obstacle-specific robustness,
with hardware applications on various robotic platforms.

V. CONCLUSION

We have presented a method for synthesizing safe sets with
tunable boundary gradients using Poisson safety functions.
We showed that adjusting the desired boundary flux yields
tunable boundary gradients, providing the ability to encode
varying gradient magnitudes around obstacle surfaces, and
have demonstrated this via empirical results with simulations.
Future work will focus on semantic integration and hardware
implementation.
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